
Introduction to libpari programming

Introduction to libpari programming
A tutorial

B. Allombert

IMB
CNRS/Université de Bordeaux

23/06/2025

Introduction to libpari programming

libpari C headers
PARI code can be compiled in three ways:

1. as a standalone program
2. as a loadable module
3. directly inside libpari

In the first two cases the headers are included as follow

#include <pari/pari.h>

in the third case

#include "paridecl.h"

after all extra system headers have been included.
In the first case, PARI needs to be initialized with pari_init
before being used.

Introduction to libpari programming

libpari C types

The PARI library API mostly relies on three C types: long, ulong
(short for unsigned long) and GEN.
PARI denotes the number of bits in a ulong by BITS_IN_LONG.
A GEN x is a pointer to a data structure representing a PARI
object.
x [0] contains the type and the length of the object, which are
accessed using typ and lg. The other components can be either
codeword or pointers to other GEN (which can contains pointers to
other GEN etc.) GEN can have several components that point to the
same sub-GEN, but cycles are not allowed.

Introduction to libpari programming

The GEN types
typ returns one of the following enum values.
Leaf types (all components are codeword)
t_INT arbitrary precision integers
t_REAL arbitrary precision real numbers
t_VECSMALL vectors of long
t_STR character string
t_INFINITY ±∞

Recursive types (some components are pointers to other GENs)
t_INTMOD Z/nZ
t_FRAC rational numbers
t_FFELT finite field elt.
t_COMPLEX complex numbers
t_PADIC p-adic numbers
t_QUAD quadratic numbers (deprecated)
t_POLMOD K [X]/T

Introduction to libpari programming

The GEN types

t_POL polynomials
t_SER power series
t_RFRAC rational function
t_QFB binary quadratic form
t_VEC row vector
t_COL column vector
t_MAT matrix
t_LIST list
t_CLOSURE GP functions
t_ERROR error context

It is customary to call a GEN of type t_INT a t_INT, etc.

Introduction to libpari programming

Warning about use of long and ulong

▶ According to the C standard, ulong are wrapping, that is all
operations are done modulo 2BITS_IN_LONG, but this is not
the case for long, where overflow are not defined.

▶ % and / in C follow FORTRAN semantic and not PARI
semantic when the operands are negative: −1%3 = −1. PARI
provides smodss and umodsu to avoid such problem.

▶ Immediate constants sometime need to be postfixed with L or
UL to avoid confusion with int (especially in variadic
functions like mkvecsmalln).

▶ C int must generally be avoided.

Introduction to libpari programming

GEN

▶ typ(x): return the type of x .
▶ lg(x): return the length of x .
▶ settyp(x,t): set the type of x to t.
▶ setlg(x,l): set the length of x to l .
▶ cgetg(l,t); allocate a GEN of length l and type t on the PARI

stack.

Introduction to libpari programming

t_INT object
t_INT are arbitrary precision relative integers.
▶ signe(x) : sign of x , 0 is x == 0
▶ lgefint(x) : actual size in word (can be smaller than

lg(x)).
▶ expi(x) : exponent (logint(x,2)).

Access to the mantissa words of a t_INT is done using the macro
int_W, see the documentation. The sign can be changed with
setsigne.
Small integers are available as universal objects.

−2 gen_m2
−1 gen_m1
0 gen_0
1 gen_1
2 gen_2

Introduction to libpari programming

t_INT object
In the API, the operand types are encoded by the letter
▶ s : long (for "small integer")
▶ u : ulong
▶ i : t_INT

For example, for conversion:
▶ stoi: convert a long to a t_INT
▶ utoi: convert a ulong to a t_INT
▶ itos: convert a t_INT to a long
▶ itou: convert a t_INT to a ulong

Comparing:
▶ equality: equalii, equaliu, equalis
▶ equality to 1 or −1: equali1, equalim1
▶ comparison: cmpii, cmpis, cmpiu cmpsi, cmpui, cmpss,

cmpuu : return the sign of x − y as a int.

Introduction to libpari programming

Operations on t_INT
▶ addii, addis, addiu, addss, adduu: return the sum (return

a t_INT).
▶ idem with add replaced by sub, mul, mod.
▶ negi(x) returns −x , absi(x) return |x |.
▶ sqri, sqrs, sqru return the square.
▶ shifti(x,n) shift x of n bits (n can be positive or negative).
▶ truedvmdii, truedivii, modii euclidean division.
▶ smodis, smodss: return the remainder as a long.
▶ umodiu, umodsu: return the remainder as a ulong.
▶ gc_INT faster version of gc_GEN for t_INT.
▶ gc_stoi faster version of gc_GEN(av,stoi(...))
▶ gc_utoi faster version of gc_GEN(av,utoi(...))

Introduction to libpari programming

In-place operations

To operate on t_INT in place:
▶ affii(x,y) set the value of y to the value of x , assuming

lg(y) ≥ lgefint(x).
▶ affsi(x,y), affui(x,y) set the value of y to the value of

x , assuming lg(y) ≥ 3
▶ z=cgeti(l) allocates a t_INT with lg(z) = l .
▶ nbits2lg(n) returns the length needed for a t_INT of n bit.
▶ bit_accuracy(x) return the number of bits of the t_INT x .

Introduction to libpari programming

t_REAL

t_REAL are arbitrary precision floating points real numbers
▶ signe(x) : sign of x , 0 is x == 0
▶ realprec(x) : precision in bit, always a multiple of

BITS_IN_LONG.
▶ expo(x) : exponent of x
▶ mantissa_real(x,&e) return the mantissa as a t_INT.

The sign can be changed with setsigne, the exponent with
setexpo.

Introduction to libpari programming

The code letter for t_REAL is r. Functions that need to convert
integers to t_REALs need an extra argument called prec which is
the precision wanted.
▶ stor(x, prec): convert a long to a t_REAL
▶ utor(x, prec): convert a ulong to a t_REAL
▶ itor(x, prec): convert a t_INT to a t_REAL
▶ rtor(x, prec): convert a t_REAL to a t_REAL with a

different precision.

Introduction to libpari programming

Operations on t_REAL

▶ equality: equalrr, equalri, equalrs
▶ comparison: cmprr, cmpri, cmprs, cmpir, cmpsr.
▶ addrr, addri, addrs, addir, addsr: return the sum (return

a t_REAL).
▶ idem with add replaced by sub, mul, div
▶ negr(x) returns −x , absr(x) return |x |, sqrr(x) returns

x2. shiftr(x,n) multiply x by 2n (n can be positive or
negative).

▶ divri, truedivii, modii
▶ truncr, floorr, ceilr roundr.

Introduction to libpari programming

In-place operations

To operate on t_REAL in place:
▶ affrr(x,y) set the value of y to the value of x converted to

the precision of y .
▶ affsr(x,y), affur(x,y) set the value of y to the value of

x converted to a t_REAL with the same precision as y .
▶ z=cgetr(l) allocates a t_REAL with lg(z) = l .
▶ prec2lg(n) returns the length needed for a t_REAL of

precision n.

Introduction to libpari programming

Vectors

Vectors are available in two variant t_VEC and t_COL. Since PARI
uses French linear algebra convention, t_COL is often more natural.
To test if a type t is either t_VEC and t_COL, use is_vec_t(t).
if v is a vector, and l=lg(v), then v has l − 1 components,
gel(v,1),...,gel(v,l-1).
To allocate a vector with n undefined components , do
v = cgetg(n+1, t_VEC); or v = cgetg(n+1, t_COL);.
Note than this is not a valid object until all components have been
set (by using gel(v,i) = ...).

Introduction to libpari programming

Vector example

GEN fun(long n)
{

long i;
GEN v = cgetg(n+1, t_COL);
for (i = 1; i <= n; i++)

gel(v,i) = sqru(i);
return v;

}

Introduction to libpari programming

Vectors

zerovec(n) and zerocol(n) create a vector of gen_0 that can
be filled later. const_vec(n,x) and const_col(n,x) create
vectors of x .
Fixed-length short vectors can be created with mkvec(x1),
mkvec2(x1,x2), mkvec3(x1,x2,x3), mkvec4(x1,x2,x3,x4),
mkvec5(x1,x2,x3,x4,x5), mkvecn(n,x1,...,xn), mkcol(x1),
mkcol2(x1,x2), mkcol3(x1,x2,x3), mkcol4(x1,x2,x3,x4),
mkcol5(x1,x2,x3,x4,x5). mkcoln(n,x1,...,xn).
For example [0,1,2] can be created with
mkvec3(gen_0,gen_1,gen_2).

Introduction to libpari programming

t_MAT

t_MAT are represented as vector of t_COL of identical length. if m
is a t_MAT, and l = lg(m), then m has l − 1 columns,
gel(m,1),...,gel(m,l-1), which have all the same length.
Thus the number of row of a matrix with zero columns is not
defined. The coefficients of m can be accessed with
gcoeff(m,i,j) which is a short-hand for gel(gel(m,j),i).
To allocate a t_MAT with n undefined colums, do
m = cgetg(n+1, t_MAT) then set the columns with gel(v,i) =
....
zeromatcopy(n,m) create a matrix of gen_0 that can be filled
later.

Introduction to libpari programming

Matrix example

GEN fun(long n, long m)
{

long i, j;
GEN v = cgetg(m+1, t_MAT);
for (i = 1; i <= m; i++)
{

GEN c = cgetg(n+1, t_COL);
for (j = 1; j <= n; j++)

gel(c,j) = mulss(i,j);
gel(v, i) = c;

}
return m;

}

Introduction to libpari programming

t_VECSMALL

t_VECSMALL is a low-level type used for vector of long or ulong
depending on the context. If v is a t_VECSMALL and l = lg(v), the
components are v[1],...,v[l-1] in the long case and
uel(v,1),...,uel(v,l-1).
To allocate a t_VECSMALL with n undefined components , do
v = cgetg(n+1, t_VECSMALL);
and then set v[1],...,v[n] or uel(v,1),...,uel(v,n).

Introduction to libpari programming

t_VECSMALL example

GEN fun(long n)
{

long i;
GEN v = cgetg(n+1, t_VECSMALL);
for (i = 1; i <= n; i++)

uel(v,i) = i;
return v;

}

Introduction to libpari programming

t_VECSMALL

zero_zv(n) creates a vector of 0 that can be filled later.
const_vecsmall(n,x) create vectors of x .
Fixed-length short vectors can be created with mkvecsmall(x1),
mkvecsmall2(x1,x2), mkvecsmall3(x1,x2,x3),
mkvecsmall4(x1,x2,x3,x4), mkvecsmall5(x1,x2,x3,x4,x5),
mkvecsmalln(n,x1,...,xn).

Introduction to libpari programming

t_POL

t_POL are polynomials.
▶ signe(x): 0 if x = 0, 1 otherwise.
▶ varn(x): variable number of x .
▶ degpol(x): degree of x (−1 if x = 0), degpol(x)=lg(x)-3.
▶ lgpol(x): 1+degpol(x), lg(x)-2.
▶ leading_coeff(x): leading coefficient.
▶ constant_coeff(x): constant coefficient.
▶ pol_0(v), pol_1(v), pol_x(v): polynomials 0, 1, x in

variable v .

Introduction to libpari programming

�

The leading coefficient must not be an exact zero. However a
polynomial can have signe 0 even if its degree is not −1, if all its
coefficients are inexact zero.
If P is a t_POL of degree d , the coefficients of degree 0 ≤ i ≤ d
can be accessed with gel(P,i+2).
The variable number can be set with setvarn. All variables that
appears in components of polynomial must have strictly lower
priorities than varn(x)
Priority are compared using varncmp(v,w).

Introduction to libpari programming

t_POL

Creating a t_POL of degree d and variable number v requires four
steps:

allocation P = cgetg(d+3, t_POL);

settting the variable P[1] = evalvarn(v);

filling the coefs set the coefs gel(P,i+2)

renormalize P = RgX_renormalize_lg(P, d+3);

The last step will take care of setting the sign correctly.

Introduction to libpari programming

t_POL example

GEN fun(long d, long v)
{

long i;
GEN P = cgetg(d+3, t_POL);
P[1] = evalvarn(v);
for (i = 0; i <= n; i++)

gel(P, 2+i) = sqrs(i);
return RgX_renormalize_lg(P, d+3);

}

Introduction to libpari programming

t_STR

A t_STR is a (NUL-terminated) character string.
▶ GSTR(x): return the string pointer.
▶ nchar2nlong(n): number of long to allocate for n

characters.
▶ GEN strtoGENstr(const char *s): convert a C string to a

t_STR.

Introduction to libpari programming

t_CLOSURE

t_CLOSURE holds GP functions.
The length can be 6, 7 or 8.

6 inline closure
7 function
8 true closure

closure_arity(C): arity of the closure.

Introduction to libpari programming

True closures are GP functions that have a non empty context of
execution:

? my(z=3);trueclosure(x)=x+z
%1 = (x)->my(z=3);x+z

Inline closure is code that appear inside loop:

? for(i=1,100,print(i^2+1))

print(i^2+1) is an inline closure (that depend on i).

Introduction to libpari programming

The PARI stack

Since GEN can be quite complex, PARI uses a dedicated memory
management system: the PARI stack. The PARI stack is a
contiguous chunk of memory used as a scratchpad for
computation. It is made of two consecutive chunks (allocated with
mmap). The first chunk is of length parisize starts from top
down to bot and is allocated as real memory. The second chunk
starts from bot down to vbot and is allocated as virtual memory.
The total length from top to vbot is parisizemax.
The stack pointer is called avma.

Introduction to libpari programming

top
|

avma
|

bot

parisize real memory

|
vbot

}
virtual memory

parisizemax

When avma reaches bot, the bot is lowered (and a Warning:
increasing stack size occurs), When bot reaches vbot, a
PARI stack overflow error occurs. The virtual memory between
the old and new bot is then converted to real memory.

Introduction to libpari programming

The low-level function for allocating memory is very simple:

INLINE GEN
new_chunk(size_t x) /* x is a number of longs */
{

GEN z;
if (x > (avma-bot) / sizeof(long))

new_chunk_resize(x);
z = ((GEN) avma) - x;
avma = (pari_sp)z;
return z;

}

Introduction to libpari programming

The PARI stack has several advantage.
▶ memory allocation are very fast.
▶ it is fully reentrant.
▶ it prevents memory leak.
▶ it is always obvious who owns a particular address.
▶ it allows object to be serialized.

In principle, GEN can exist anywhere in memory, however all libpari
functions that return new GENs allocate them on the PARI stack.

Introduction to libpari programming

A function should normally start by recording the stack pointer
avma of type pari_sp and restore the stack at the end. For that
purpose, gc_GEN, gc_long, gc_ulong are available.

<TYPE> fun(...)
{

pari_sp av = avma;
<TYPE> z;
...
z = ...;
return gc_<TYPE>(av, z);

}

where <TYPE> can be any of long, ulong, GEN. If the GEN is
known to be a leaf type, gc_leaf should be used. For void
function, use set_avma(av).

Introduction to libpari programming

gc_GEN and gc_upto

gc_GEN(av, z) works by copying recursively the GEN z outsize
the stack, reseting avma to av and recopying z at avma. The cost
only depend on the size of z
gc_upto(av, z) is a faster version that just move z to avma,
shiftint the pointers as needed. However it has two requirements.

1. the pointer z must be created before its components.
2. The part of the stack used by z and its components need to

be connected.
GEN produced by gc_GEN always have this property.
If furthermore, there were no temporaries created, return z is
sufficient.

Introduction to libpari programming

Examples
pari_sp av = avma;
GEN a = utoi(3), b = utoi(4);
GEN V = cgetg(3,t_VEC);
gel(V,1) = a;
gen(V,2) = b;
return gc_GEN(av, V);

In this example, the first condition is not respected, gel(V,1) and
gel(V,2) are created before V .

GEN V = cgetg(3,t_VEC);
gel(V,1) = utoi(3);
gen(V,2) = utoi(4);
return V;

In this example, there is no temporaries created, no need for gc.

Introduction to libpari programming

pari_sp av = avma;
GEN V = cgetg(3,t_VEC);
gel(V,1) = addiu(shifti(gen_1,128),1);
gen(V,2) = utoi(4);
return gc_GEN(av, V);

In this example, the second condition is not respected, the object
shifti(gen_1,128) is a temporary is the middle of V .

pari_sp av = avma;
GEN z = shifti(gen_1,128);
GEN V = cgetg(3,t_VEC);
gel(V,1) = addiu(z,1);
gen(V,2) = utoi(4);
return gc_upto(av, V);

In this example, the temporary is created before V , so now both
condition hold.

Introduction to libpari programming

pari_sp av = avma;
GEN a = addiu(shifti(gen_1,128), 1);
GEN V = cgetg(3,t_VEC);
gel(V,1) = a;
gen(V,2) = utoi(4);
return gc_GEN(av, V);

In this example, gel(V,1) is created before V.

Introduction to libpari programming

mkvec2 and retmkvec2
{

pari_sp av = avma;
V = mkvec2(utoi(3), utoi(4));
return gc_GEN(av, V);

}

In this example, the utoi(3) and utoi(4) are created before V .
{ retmkvec2(utoi(3), utoi(4)); }

Here, retmkvec2 is a macro that ensure that cgetg(3,t_VEC) is
called before utoi(3) and utoi(4) are evaluated.
#define retmkvec2(x,y)\

do { GEN _v = cgetg(3, t_VEC);\
gel(_v,1) = (x);\
gel(_v,2) = (y); return _v; } while(0)

Introduction to libpari programming

Functions returning several GEN

If a function return several GEN (using pointers), one can use
gc_all(av, n, &x_1,...,&x_n) to restore the stack while
preserving x_1,...,x_n. gc_all returns x_1 so that return
gc_all(av, n, &x_1,...,&x_n) is valid.

Introduction to libpari programming

Example

GEN extgcd(GEN A, GEN B, GEN *U, GEN *V)
{

pari_sp av = avma;
GEN ux = gen_1, vx = gen_0, a = A, b = B;
while (!gequal0(b))
{

GEN r, q = dvmdii(a, b, &r), v = vx;
vx = subii(ux, mulii(q, vx));
ux = v; a = b; b = r;

}
*U = ux;
*V = diviiexact(subii(a, mulii(A,ux)), B);
return gc_all(av, 3, &a, U, V);

}

Introduction to libpari programming

Cleaning up the stack inside loops
In this example we clean up the temporaries so v stays connected.

GEN fun(long n)
{

long i;
GEN v = cgetg(n+1, t_COL);
for (i = 1; i <= n; i++)
{

pari_sp av2 = avma;
GEN w = sqri(addiu(sqru(i),1));
gel(v,i) = gc_upto(av2, w);

}
return v;

}

Introduction to libpari programming

Cleaning up the stack inside loops
In this example we clean up the temporaries at eache turn of the
loop. We need to make sure to list every variables that need to be
preserved.
GEN fibo(long n) {

pari_sp av = avma;
GEN a = gen_0, b = gen_1;
long i;
for (i = 1; i < n; i++)
{

GEN c = b;
b = addii(a,b); a = c;
gc_all(av, 2, &a, &b);

}
return gc_INT(av, b);

}

Introduction to libpari programming

Cleaning up the stack inside loops
To avoid cleaning the stack too often, the macro gc_needed(,1)
is used to detect when the stack is half full.
GEN fibo(long n) {

pari_sp av = avma;
GEN a = gen_0, b = gen_1;
long i;
for (i = 1; i <= n; i++)
{

GEN c = b;
b = addii(a,b); a = c;
if (gc_needed(av, 1))

gc_all(av, 2, &a, &b);
}
return gc_INT(av, b);

}

Introduction to libpari programming

Cleaning the stack inside loops

When cleaning the stack inside loop, one should add a warning:

for (i = 1; i <= n; i++)
{

GEN c = b;
b = addii(a,b); a = c;
if (gc_needed(av, 1))
{

if (DEBUGMEM > 1)
pari_warn(warnmem,"fibo, step %ld", i);

gc_all(av, 2, &a, &b);
}

}

Introduction to libpari programming

Using affii
GEN fibo(long n) {

long l = nbits2lg(n);
GEN b = cgeti(l);
pari_sp av = avma;
GEN a = cgeti(l);
pari_sp av2 = avma;
for (i = 1; i <= n; i++)
{

GEN c = addii(a,b);
affii(b,a);
affii(c,b);
set_avma(av2);

}
set_avma(av); return b;

}

Introduction to libpari programming

Clones

Sometime it is inconvenient to keep some GEN in the PARI stack.
▶ gclone: return a copy of a GEN ouside the PARI stack. This

copy must be freed at some point using gunclone.
▶ gunclone: free a clone
▶ gcopy: copy a GEN to the PARI stack, in a way suitable for

gc_upto.
▶ icopy: as gcopy for t_INT.

GP variables and history entries (%) are clones.

Introduction to libpari programming

Example: gc_GEN

A slower version of gc_GEN

GEN my_gc_GEN(pari_sp av, GEN s)
{

GEN c = gclone(s);
set_avma(av);
s = gcopy(c);
gunclone(c);
return s;

}

Introduction to libpari programming

Example: gc_GEN

A slower version of gc_GEN

GEN my_gc_GEN(pari_sp av, GEN s)
{

return gc_upto(av, gcopy(s));
}

However this version has the major drawback of risking a stack
overflow if s is large.

