
Tutorial for the Pari Library

Henri Cohen

June 22, 2025

1 A First Example: Somos Sequences

This tutorial is meant as a gentle introduction to programming the Pari
Library, and does not replace fuller courses that may be given. We assume
reasonable knowledge of the use of the GP interpreter, and also a reasonable
familiarity with the C language: note that I am not at all an expert in the
C language, but I have been using it to program the Library for decades
without knowing all the subtleties.

We assume installed the complete source code, for instance from a GIT

repository.
I believe that the best way to start is simply to write a new function for

Pari/GP, and we will comment each step as we go along.

Example 1. As a reasonably complete simple first example, let us write
a program which computes Somos sequences. Let us start with the simplest
non-trivial one, we will generalize later.

The Somos-4 sequence can be defined by a1 = a2 = a3 = 1, a4 = 2, and
for n ≥ 5 by the recursion

an =
an−1an−3 + a2n−2

an−4

What makes this sequence interesting is that all the an are integers, although
we keep dividing by an−4.

Given an integerN , we want to output theN -component vector (a1, . . . , aN),
and a possible GP program (with no checks whatsoever) would be the fol-
lowing:

somos4(N)=

{ my(V);

V=vector(N);for(i=1,3,V[i]=1); V[4]=2;

for(n=5,N,

my(R=V[n-1]*V[n-3]+V[n-2]^2);

1

if(R%V[n-4],error("Somos4 sequence is not integral ???"));

V[n]=R/V[n-4]);

return(V); }

We would now like to add this nice function to the GP interpreter. First,
we have to put the C code which we are going to write somewhere. Of
course we could do everything from scratch, but we are lazy and will use
the existing Library tree. Since this is an arithmetic function, we will add
it to one of the arithmetic programs of the Library, which not surprisingly
are in src/basemath/arithx.c with x=1 or 2. Let us add it to arith2.c.
So open that file, and at the end (after the issquarefree program) let us
write our code. We begin as follows, omitting for now some checks and
declarations:

GEN

somos4(ulong N)

{

GEN V;

V = cgetg(N + 1, t_VEC);

for (i = 1; i <= 3; i++) gel(V, i) = gen_1;

gel(V, 4) = gen_2;

We first meet the most important word in the Library: GEN. All Pari-
specific objects are GEN’s, we will of course see how they are handled. GEN

simply stands for “GENeric”, and is an alias for pointer to long.
So the above declares a function somos4 which will return a GEN and takes

as argument an ordinary C ulong (unsigned long). The first instruction says
that we will need a vector V (we do not know that it is a vector yet).

The next command cgetg, here V = cgetg(N + 1, t VEC);, is by far
the most important way to construct new Pari objects, in other words new
GEN’s. This command creates on the Pari stack an object which will oc-
cupy N + 1 words. In addition, it fills the code word (or words) with the
necessary code which will tell the Library that it will be a vector, repre-
sented by t VEC. Two crucial things to know about this construction: first,
although the Library now knows that we will have a vector, the components
are completely undefined, and trying to access them (we will see how) will
probably result in a segfault. Note that this is completely different from the
GP function vector(N) which not only creates the vector, but also fills it
with zeros (and which is coded in the Library as zerovec(N)). Second, it
is essential to study the Library manual to know how many codewords are
necessary. Many Pari types need only ONE codeword, with the essential
exception of integers (type t INT) and reals (type t REAL), which have their
specific cgetg functions called (of course) cgeti and cgetr, as well as poly-
nomials (type t POL) and power series (type t SER) for instance. So let us

2

forget this for a moment: since a vector needs a single codeword, to create
an N -element vector we thus need N + 1 words, explaining the command V

= cgetg(N + 1, t VEC).
The next instructions first involve universal constants: gen 1, and gen 2:

there also exist gen m2, gen m1, gen 0, ghalf, as well as genI(), which is
in fact a function with 0 arguments. They also introduce another essential
function, in fact a macro, gel(V, i) (gel is for Gen ELement), which
means the i-th component (not codeword) of the vector V. The reason for
the existence of this macro is as follows: we would have liked to write simply
V[i], and in fact this is correct C programming. But since a GEN is a pointer
to long, V[i] is a long, not a GEN, so we would have to typecast it as
(GEN)V[i]. This macro can be used as here on the left-hand side of an
assignment (an lvalue), or on the right-hand side, so we will almost never
have to do any typecasting.

(Note: we would have liked to have the type GEN to be a pointer also to
a GEN, but this is not possible in the C-language, although it is possible in
other languages.)

Let us now continue our program:

GEN

somos4(ulong N)

{

GEN V;

V = cgetg(N + 1, t_VEC);

for (i = 1; i <= 3; i++) gel(V, i) = gen_1;

gel(V, 4) = gen_2;

for (n = 5; n <= N; n++)

{

GEN R = gadd(gmul(gel(V, n - 1), gel(V, n - 3)), gsqr(gel(V, n - 2)));

if (!gequal0(gmod(R, gel(V, n - 4))))

pari_err(e_MISC, "Somos4 sequence is not integral ???");

gel(V, n) = gdiv(R, gel(V, n - 4));

}

return V;

}

We now meet the standard arithmetic operations such as: addition
(gadd), multiplication (gmul), squaring (gsqr), division (gdiv), inversion
(ginv), remaindering, i.e., modulo (not to be confused with INTMODs)
(gmod), comparison (gcmp), as well as the comparison to 0, (gequal0), or
to 1 (gequal1). The names are usually self-explanatory, the initial letter
g meaning usually that the result is a GEN (except for the comparison op-
erators which return 0 or 1), and the arguments are by default also GEN’s
(we will see below what to do when the result or some of the arguments

3

are longs). We will see later the powering function gpow, which needs some
extra information.

Note that a function such as gadd, gmul, and so on require two GEN

arguments and creates a new GEN on the Pari stack. It is possible to avoid
creating a new GEN using other types of functions, but we will not see this
here.

We also meet the function pari err, which has numerous incarnations
that we will see below, but for now simply with the first argument e MISC

(for MISCellaneous) we just write an error message, just as GP’s error, and
then aborts the program.

Our program is now almost ready, we need of course to add the forgotten
declaration ulong i, n;. Remember that in the GP interpreter, loop vari-
ables such as i and n above should not be declared (using my() or local()),
but of course in C it is compulsory.

Now, how do we use this program from GP ? Nothing simpler. Since
we cleverly have added it to the file arith2.c which is in the usual tree
for compiling the Pari source, we simply go the head of the tree, usually a
directory simply called pari, and type make. If you did not make any typos,
it should compile perfectly, and you can now launch a new version of GP,
probably by typing ./gp, and to have access to your program, you simply
use the install command of the GP interpreter, and since we have put our
program in the standard Library which is the default, there is no need to
specify a library, so we simply write for instance inside GP:

? install(somos4, L);

? somos4(10)

% = [1, 1, 1, 2, 3, 7, 23, 59, 314, 1529]

The install prototype L means that the argument of the function is a
long (as opposed to a GEN, which would be coded G) which also codes for
ulong and int, and since the output is not specified, by default it is a GEN.
Note for future reference that if the output had been a long or an int, the
prototype must then begin with a lowercase l, for instance install(myprog,
lL). There are of course more complicated prototypes, we will see some of
them in later examples.

Remark. The above program is given as a simple example of Library
programming. Very often, programming directly in the Library gives faster
programs than the corresponding GP script, but in the present example this
is not the case.

The above program, given for simplicity since it is our first use of the
Library, lacks at least three additional parts to make it completely robust,
plus optimizations to make it more efficient. Skip this on first reading.

4

1. First, type checking of the function arguments. Here the argument is
an ulong, so it is the C compiler which does the type checking, but
when an argument is a GEN, we usually want it to be of a certain Pari

type, for instance an integer, or a polynomial, or a vector, etc... In GP

you would write for instance

if (type(z) != "t VEC", error("incorrect type in myprogram"));

This translates in the Library as:

if (typ(z) != t_VEC) pari_err_TYPE("myprogram", z);

Thus you must use typ and not type, there are no quotes around the
type names, and there is a specific pari err program called pari err TYPE

which also allows you to print the offending argument.

2. Second, domain checking. For instance, to be rigorous the program
that we wrote above does not work if N ≤ 3. In GP we would write
if (N <= 3, error("N <= 3 in somos4")); . In Library mode, we
use pari err DOMAIN which has a slightly more complicated but al-
most self-explanatory syntax such as:

if (N <= 3)

pari_err_DOMAIN("somos4", "argument", "<=", utoi(3), utoi(N));

Note that utoi is the function transforming a C ulong into a Pari

GEN of type t INT. We will see a much more detailed discussion of this
type of functions in Section 5.

3. Third, garbage collecting, either inside the function, or at the end
before the return statement. We will devote Section 3 to this very
important aspect.

4. Finally, note that if we want to make such a program as a permanent
Library feature, it is essential to optimize, and also to do what we
can call microoptimizations (as opposed to algorithmic optimizations).
Indeed, the general operation programs such as gadd, gmul, etc... are
completely general programs working on GEN’s. But here, we know
that we only work with specific GEN’s which are t INTs. Thus, instead
of gadd, it is better to use addii, instead of gmul we use mulii,
etc... The names are self-explanatory (we will give more explanations
below), the only specific functions whose names are more complicated
are dvmdii and truedvmdii, both for integer division with remainder,
for dvmdii the remainder being of the same sign as the dividend, and
for truedvmdii the remainder being nonnegative. A possible more
optimized program (still without checks or garbage collecting) is as
follows:

5

GEN

somos42(long N)

{

GEN V;

long i, n;

V = cgetg(N + 1, t_VEC);

for (i = 1; i <= 3; i++) gel(V, i) = gen_1;

gel(V, 4) = gen_2;

for (n = 5; n <= N; n++)

{

GEN R = addii(mulii(gel(V, n - 1), gel(V, n - 3)), sqri(gel(V, n - 2)));

GEN r;

gel(V, n) = dvmdii(R, gel(V, n - 4), &r);

if (!gequal0(r))

pari_err(e_MISC, "Somos4 sequence is not integral ???");

}

return V;

}

As mentioned above, whenever possible it is better to use specific func-
tions such as addii, mulii, and sqri, but the gain in efficiency is completely
negligible. On the contrary, the use of the dvmdii function which gives both
the quotient and the remainder gives a considerable speed gain since it avoids
one division per loop.

Remark. The above example where we first give functions acting on
general GENs such as gadd, gmul, etc..., and then more specific and slightly
faster functions such as addii, mulii, etc... is quite general in the Library.
For many general functions there exist more specialized functions specific to
given types, and in the present tutorial we will only mention a few.

Exercise

1. In fact, the somos4 sequence starts at n = 0 with a0 = a1 = a2 = a3 =
1. We started at n = 1 to simplify, and you can easily modify it so that
the program returns the N +1-component vector (a0, a1, . . . , aN) (you
have two methods: either shift all the indices by 1 in the program,
or preconcatenate the result with 1 using GEN gconcat(GEN x, GEN

y)).

Write a similar program for the Somos5 sequence defined by ai = 1
for 0 ≤ i ≤ 4 and

an =
an−1an−4 + an−2an−3

an−5

6

2. The k-th Somos sequence is defined by ai = 1 for 0 ≤ i ≤ k − 1, and

an =

∑
1≤j≤[k/2] an−jan−(k−j)

an−k
.

Write a general program somos(N, k) for computing N terms of the
k-th Somos sequence. Check numerically that the sequence seems
integral for 4 ≤ k ≤ 7 (this is true but not completely trivial to
prove), and not always integral for k ≥ 8.

2 Example: Computation of an Infinite Series

You probably know that Pari/GP has very powerful numerical summation
and integration programs such as sumnum and intnum. Our goal in the
present example is not to replace or improve these programs (if it was rea-
sonably possible, we would have done it), but to show how to program in
C the sum of a sufficiently rapidly convergent series, so that sumnum is not
necessary, but the more simple minded suminf (which sums the terms until
they are sufficiently small) suffices.

Consider the function of a complex variable τ with ℑ(τ) > 0 defined by

E2(τ) = 1− 24
∑
n≥1

nqn

1− qn
, where q = e2πiτ .

Even if you do not know the theory of modular forms or elliptic functions,
you should know that this function is of great importance.

We want to write a program to compute its values for ℑ(τ) > 0 without
using the modular properties of E2, but simply by summing the defining
series. A straightforward GP program would be as follows:

E2(tau)=

{ my(q=exp(2*Pi*I*tau));

return(1-24*suminf(n=1,n*q^n/(1-q^n))); }

Translating this into a C program is not completely trivial because the
GP suminf function has a more complicated interface than we want for the
beginning of a tutorial (we will see in Section 13 below how to do this). So
we will write a longer but more explicit GP script, as follows:

E2(tau)=

{ my(q=exp(2*Pi*I*tau),B=getlocalbitprec(),S=0.,n=0,qn=1.);

while(exponent(qn)>-B,

n++;qn*=q;S+=n*qn/(1-qn));

return(1-24*S); }

7

A corresponding C program could start as follows:

GEN

E2(GEN tau, long prec)

{

GEN q = gexp(gmul(gmul(gmul(gen_2, mppi(prec)), gen_I()), tau), prec);

GEN S = real_0(prec), qn = real_1(prec);

long n = 0, B = prec2nbits(prec);

The first important thing to notice is that, although in GP the function
E2 has a single variable tau, in the C Library it is essential to include the
default precision prec with which the computation will be done. Two crucial
things to note concerning this: first, prec is not a reserved word, you can call
it whatever you like, and when we will declare the prototype of E2 we will
write install(E2,Gp), the lowercase p indicating that the second variable
will be the precision of the computation.

Second, if the computation involves only inexact real or complex num-
bers, the computation will be done with the accuracy of the input, so prec

will be ignored, but nonetheless must be included in the function defini-
tion. Consider for instance the exponential function gexp, with prototype
GEN gexp(GEN z, long prec). If you call gexp(gen 1, prec), it abso-
lutely needs to know prec to perform the computation. On the contrary,
if you call gexp(mppi(precold), prec), where mppi(precold) computes
π to accuracy precold, then prec will be ignored, and the computation of
the exponential will be done with the accuracy precold.

The computation of q in the next line looks complicated, but we have
written it in this way so that everything is explicit. We will see that the
Library has shortcuts (macros or inline functions) which will make program-
ming much simpler.

The quantity 2πi involves three constants 2, π, and i. We have seen
that 2 is represented by gen 2. However, multiplying by 2 or a power of 2
is so common that the function gmul2n with prototype GEN gmul2n(GEN z,

long k) exists for this purpose: writing gmul2n(z, k) multiplies the GEN z

by 2k, where k can be a (positive or negative) long.
The “constant” π depends of course on the desired accuracy, so is not

really a constant but a function mppi(prec) of the unique variable prec.
Finally, the constant i is represented as the 0-variable function gen I().
Now since 2πi is so often encountered in mathematics, the Library has
a short-hand for it: the function PiI2n(long n, long prec) computes
2nπi (in passing, note that Pi2n(long n, prec) computes 2nπ). Thus in-
stead of gmul(gmul(gen 2, mppi(prec)), gen I()), we will simply write
PiI2n(1, prec).

On the next line, we initialize S to 0. and qn to 1.. In fact, in the present
example it would not have mattered if we initialized them to 0 (S=gen 0)

8

and 1 (qn=gen 1), but in other circumstances it is essential to initialize to
real numbers (think of the difference between sum(n=1,1000000,1/n) and
sum(n=1,1000000,1/n,0.)). This is done using the functions real 0 and
real 1. Note that real 1 is really useful, but it is in general bad practice
to use real 0, but let us forget this for now.

The last line contains the macro prec2nbits. Now I must admit that
I don’t really understand if prec stands for the number of words occupied
by a real number (prec = 4 at 38D on a 64 bit machine) or the number of
bits of accuracy (prec = 128 at 38D). It doesn’t matter, prec2nbits does
know, so B will always be the number of bits. In this example I believe
that B = prec would also work, but let us be safe. We now continue our
program, after simplifying the first instruction.

GEN

E2(GEN tau, long prec)

{

GEN q = gexp(gmul(PiI2n(1, prec), tau), prec);

GEN S = real_0(prec), qn = real_1(prec);

long n = 0, B = prec2nbits(prec);

while (gexpo(qn) > -B)

{

n++; qn = gmul(qn, q);

S = gadd(S, gmulsg(n, gdiv(qn, gsubsg(1, qn))));

}

return gsubsg(1, gmulsg(24, S));

}

The function gexpo is for all practical purposes the same as the GP

function exponent. The new functions that we meet are gsubsg and gmulsg,
where the letter s stands for “single”, meaning a C long, and of course g

for GEN. Thus for all the standard arithmetic operations gadd, gsub, etc...,
adding the suffix sg means that the first operand will be a long (i.e., not a
GEN), adding the suffix gs would mean that the second operand is a long,
and even adding the suffix ss would mean that both operands are longs,
the result still being a GEN.

As before, include this in the Library tree, for instance at the end of
src/basemath/trans3.c, compile it, and install it in the modified GP by
install(E2, Gp), where the letter p is essential to indicate the variable
prec. For instance, check that E2(i) = 3/π.

Exercise

1. For k ≥ 2 an even integer, define

Ek(τ) = 1− 2k

Bk

∑
n≥1

nk−1 qn

1− qn
, where q = e2πiτ .

9

Write a more general program E(k,tau,prec) which computes this
quantity. The Bernoulli numbers are obtained thanks to the function
called bernfrac both in GP and in the Library.

2. Improve your program by replacing qn/(1− qn) by 1/(q−n − 1).

3. For a few complex values of τ with ℑ(τ) > 0, check for instance that
E4(τ)

2 = E8(τ) and E4(τ)E6(τ) = E10(τ).

For this last question, you will of course write simple GP commands. It
is however essential to know how to create complex numbers in the Library.
Assume you want to create the complex number a+bi, where a and b are real
numbers represented as GEN’s (usually if not always of type t INT, t FRAC,
or t REAL). There are two equivalent methods: the lazy method is simply
to write z=mkcomplex(a, b). The completely explicit method would be to
use explicitly the internal structure of complex numbers as follows:

z = cgetg(3, t_COMPLEX);

gel(z, 1) = a; gel(z, 2) = b;

Although semantically correct, it would be very bad practice to write
z = gadd(a, gmul(b, gen I()));

3 Same Example, with Garbage Collecting

We now come to one of the most subtle but crucial part of Library program-
ming, garbage collecting.

We keep the E2 example given above, installed in GP. Under GP, type the
following:

? install(E2,Gp)

? \p10000

? E2(I/100);

Since we were not at all clever, choosing τ = i/100 will give a very
slowly convergent series, so this should require a ridiculous 30 or so seconds,
while if we had been clever and used the modular properties of E2, it would
have required less than 0.5 seconds. But that is not the point: before the
program even finishes, you will (probably) get warnings from GP that it
needs to increase the stack size, and in fact if your defaults sizes are small,
the program may even abort before finishing.

To avoid this, we need some way to do garbage collecting during the
computation. Indeed, the variables qn and S change at each iteration, so we
can delete all previous values as we go along.

Before doing this, let us consider the following modification to our pro-
gram:

10

GEN

E2new(GEN tau, long prec)

{

pari_sp av = avma;

return gc_GEN(av, E2(tau, prec));

}

(of course in practice we do not create a new function but simply include
the first instruction at the beginning and the second at the end of the initial
program E2). We meet here the two basic constructs of garbage collection:
there is a reserved identifier avma (for AVailable Memory Address) which at
all times, as its name indicates, contains the first available address where
Pari can create new objects. Although this is of course a pointer to long,
for good programming practice we MUST use the specific type pari sp

meaning Pari stack pointer. Thus, to do garbage collecting the first thing
to do is to keep the initial value of avma in some variable, here av.

The second thing to do is to clear the garbage generated by the compu-
tations in the function. In most cases this is done with the simple function
gc GEN: the instruction gc GEN(av, z) clears everything that you have com-
puted before z itself, and then copies the value of z at the initial available
address av and returns this copy. Note in passing that the Library func-
tion which creates a copy of a GEN together with all its components is GEN
gcopy(GEN z).

Exercise.
In a GP session where the above functions have been installed, type \x.

You will see a description in hexadecimal of the last computed expression
in the Pari stack of your session, and in particular the first hex number
is the address of that expression. Now call E2(I), and again \x. The
difference between the two addresses (minus the space occupied by your last
expression) will be the size occupied by your computation. This should be
around 19600 bytes. Now do the same, but call E2new(I) instead. Here the
difference should be around 1744 bytes. The difference is not negligible, and
of course if it accumulates, the stack will soon overflow.

Let us come back to the initial problem of stack overflow during the
computation of E2. Here we need to save both the values of qn and S. A
very clumsy (but perfectly correct) way of doing this is to use a temporary
Pari vector variable containing both and doing the garbage collecting on this
vector. Also, note that we want to keep the value of q, so we cannot do the
inner garbage collecting using av, but we need a new stack pointer which is
set after the creation of q. We could thus write something like this:

GEN

E2(GEN tau, long prec)

{

11

pari_sp av = avma, av2;

GEN q = gexp(gmul(PiI2n(1, prec), tau), prec);

GEN S = real_0(prec), qn = real_1(prec);

long n = 0, B = prec2nbits(prec);

av2 = avma;

while (gexpo(qn) > -B)

{

GEN qnS;

n++; qn = gmul(qn, q);

S = gadd(S, gmulsg(n, gdiv(qn, gsubsg(1, qn))));

qnS = gc_GEN(av2, mkvec2(qn, S));

qn = gel(qnS, 1); S = gel(qnS, 2);

}

return gc_GEN(av, gsubsg(1, gmulsg(24, S)));

}

In this program, we use the function mkvec2 which creates a vector
with 2 GEN components (there also exist mkvec, mkvec3, mkvec4, mkvec5,
and mkvecn). An instruction of the form z = mkvec2(qn, S) is essentially
equivalent to z = cgetg(3, t VEC); gel(z, 1) = qn; gel(z, 2) = S;.
Note that these are not copies of qn and S, but simply pointers to their
location, so they would be destroyed by garbage collecting. Luckily, gc GEN

does do this copying, so is safe. But (see below) other garbage collecting
functions such as gc upto do not copy, so cannot be used with mkvecx.

You can now try the same experiment as before, calling this at 10000D
with τ = i/100, it will indeed still require around 30s, but there will be no
more warnings concerning the stack.

Now since this is an extremely frequent occurrence, the Library has of
course considerably simplified this clumsy process. Instead of introducing a
temporary variable qnS and writing the complicated last line of the while
loop, we use the command gc all as follows:

gc_all(av2, 2, &qn, &Sn);

This is equivalent to the last two lines of the while loop above. The
number 2 indicates the number of variables to be kept, and of course do not
forget the & sign, since qn and Sn will be moved, so we not only need to know
their values but also their addresses. (To be absolutely correct, we should
write (void)gc all(...) since gc all returns its first GEN argument, here
qn.)

There is still something a little stupid in the above program. Sure, the
garbage accumulates, but not that much, so it is a waste of time to do the
garbage collecting at each loop. We could be clever, and only do it every
100 loops, say (try it!). If you do try it, you will notice that the program

12

indeed runs faster since we have suppressed almost all garbage collection, but
only slightly faster (maybe 1 or 2%). This is because the garbage handling of
Pari/GP (all the functions starting with gc) is extremely efficient compared
to other methods, used by almost all other systems.

We can do something more elegant than that by using the function
gc needed: we write:

if(gc_needed(av2, 1)) gc_all(av2, 2, &qn, &S);

This instruction says that if 50% of the stack is full, one should do a
garbage collect (note: the integer 1 in gc needed can be changed to 2 or
more (which changes what proportion of the stack you allow to fill), but
apart for very special needs, 1 is sufficient).

The final program is thus:

GEN

E2(GEN tau, long prec)

{

pari_sp av = avma, av2;

GEN q = gexp(gmul(PiI2n(1, prec), tau), prec);

GEN S = real_0(prec), qn = real_1(prec);

long n = 0, B = prec2nbits(prec);

av2 = avma;

while (gexpo(qn) > -B)

{

n++; qn = gmul(qn, q);

S = gadd(S, gmulsg(n, gdiv(qn, gsubsg(1, qn))));

if (gc_needed(av2, 1)) (void)gc_all(av2, 2, &qn, &S);

}

return gc_GEN(av, gsubsg(1, gmulsg(24, S)));

}

Of course since this is such an important function, a much faster im-
plementation of this program E2 and the more general program E written
in the above exercise, already exist in the Pari Library under the name
cxEk, which must be installed under GP or accessed using the GP function
elleisnum, which however multiplies the result by suitable constants.

4 Example: Gegenbauer Polynomials

There exist many preprogrammed polynomial families in Pari/GP such as
pollegendre, polchebyshev, polhermite, etc... Let us add one more: the
Gegenbauer polynomials, defined by

Cα
n (x) =

∑
0≤k≤⌊n/2⌋

(−1)k
(α)n−k

k!(n− 2k)!
(2x)n−2k ,

13

where (α)m = α(α+1) · · · (α+m− 1) is the rising Pochhammer symbol. A
naive GP implementation is as follows:

poch(a,m)=prod(j=0,m-1,a+j);

polgegen(a,n)=sum(k=0,n\2,(-1)^k*poch(a,n-k)/(k!*(n-2*k)!)*(2*’x)^(n-2*k));

To see how to convert this into a C program for the Library, the only
new thing to learn is how to represent the variable ’x (or any other vari-
able). This is simply done using the function pol x(long v), where v is
the variable number. For now, you only need to know that there exist two
predefined variables: ’x and ’y, with respective variable numbers 0 and
1. There also exist pol 0(long v) and pol 1(long v) which create the
constant polynomials 0 and 1 in the variable number v.

We give directly the full program, including garbage collection, as follows
(evidently we should use Horner’s rule, and more clever computation of the
coefficients using a trivial recursion, but we are giving a simple example so
no optimization), and will comment after:

GEN

poch(GEN a, long m)

{

GEN P = gen_1;

long j;

for (j = 0; j < m; j++) P = gmul(gaddgs(a, j), P);

return P;

}

GEN

polgegen(GEN a, long n)

{

pari_sp av = avma;

GEN P = gen_0, X2 = gmul2n(pol_x(0), 1);

long k;

for (k = 0; k <= n/2; k++)

{

GEN C;

C = gdiv(poch(a, n - k), gmul(mpfact(k), mpfact(n - 2*k)));

C = gmul(C, gpowgs(X2, n - 2*k));

if (odd(k)) C = gneg(C);

P = gadd(P, C);

}

return gc_GEN(av, P);

}

14

Comments on these programs. The poch program is straightforward.
For polgegen, we first set X2 equal to 2x (I usually reserve the variable X

for x itself). The for loop used to perform the summation has the variable
k going up to n/2, but remember that in C, n/2 is computed as the integer
part of n/2, while in GP, n/2 would be a fraction if n is odd, so we needed
to write n\2 in the GP script (in fact n/2 would also have worked, but would
have been less elegant).

In the program we meet several new functions: first mpfact, which is the
ordinary factorial function giving an integer, i.e., a t INT. Very often (not
here), the factorials are large, and it is sufficient to have approximations
as real numbers (as opposed to integers): in that case, you should use the
function mpfactr, which returns a t REAL.

Second, the function gpowgs. As its last two letters implies, it takes two
arguments, the first a GEN, the second a C long. Concerning this: the most
general powering function is (of course) called gpow. But in general, we
compute xy as exp(y log(x)), so we need to specify the working accuracy, so
gpow has three variables gpow(GEN x, GEN y, long prec). But when y is
a C long, we compute xy by the binary powering algorithm, so there is no
need for prec, and the prototype for gpowgs is thus simply GEN gpowgs(GEN

x, long y) (if y is a t INT, one also uses the binary powering algorithm,
so prec is ignored, and you may write gpow(x, y, 0), or better, use the
specific function powgi).

Concerning the necessity of a prec variable, a useful hint: in some cases,
even though a function may require a precision variable such as prec, we
may want either to ignore it completely, or to perform the computation
at low accuracy (typical example: using a nontrivial formula you want to
compute the number of terms necessary to obtain a certain accuracy in a
computation. You could do the computation using C double, but you can
also do it in the Library with low precision). You have available for this
purpose some predefined prec’s, the most useful being DEFAULTPREC, which
is 64 bits, so slightly more than a C double which is 53 bits.

The last two new functions that we meet in the program are gneg (nega-
tion) and odd. Instead of odd(k) we could have written k%2, or better k&1L,
but odd(k) is clearer. Note that this applies to C longs: for GEN integers
you have the function mpodd.

Another possible GP implementation of the Gegenbauer polynomials is to
first create a vector of coefficients, and then apply Pol (GEN gtopoly(GEN

V, long v = -1) in the Library, as follows:

polgegen2(a,n)=

{ my(P=Pol(vector(n\2+1,j,my(k=j-1);(-1)^k*poch(a,n-k)/(k!*(n-2*k)!))));

P=subst(P,x,4*x^2);if(n%2,P*=2*x);P; }

This can be translated as follows:

15

GEN

polgegen2(GEN a, long n)

{

pari_sp av = avma;

long n2 = n/2, k;

GEN V = cgetg(n2 + 2, t_VEC), P, X2 = gmul2n(pol_x(0), 1);

for (k = 0; k <= n2; k++)

{

GEN C = gdiv(poch(a, n - k), gmul(mpfact(k), mpfact(n - 2*k)));

gel(V, k + 1) = odd(k) ? gneg(C) : C;

}

P = gsubst(gtopoly(V, 0), 0, gsqr(X2));

if (odd(n)) P = gmul(P, X2);

return gc_upto(av, P);

}

In addition to the gtopoly function, we encounter GEN gsubst(GEN x,

long v, GEN z), where contrary to the GP syntax, the second argument
v is not a variable such as x, but a variable number.

We could of course just as easily have written a slightly more general
program which returns the Gegenbauer polynomials in any desired variable,
not just x.

Since this example is about polynomials, here is some more detailed
information and more useful functions for dealing with them. Let us as-
sume that the GEN variable P is of type t POL, a polynomial. The following
functions, given with their prototypes, are essential (apart from varn, their
names are identical to the GP names):

long varn(P): the variable number of the main variable of P, so that
the variable itself of P is pol x(varn(P)).

long poldegree(GEN P, long v): degree of P with respect to the vari-
able v. Here and everywhere else, v = -1 codes for the main variable of P.
If the polynomial is in the variable ’x, you can also put v = 0.

GEN pollead(GEN P, long v): leading coefficient with respect to v.

GEN polcoef(GEN P, long n, long v): coefficient of degree n in the
variable v of the polynomial P. Note that this will usually create a copy of the
desired coefficient, which wastes a little time. If (and only if) you are certain
that P is of type t POL, that v is its main variable (or of course v = -1),
and that n satisfies 0 ≤ n ≤ degv(P), you may use instead gel(P, n + 2),
since a t POL has two codewords (the second codeword contains two items
of information: first and foremost the variable number v, and second, a bit
indicating whether the polynomial is identically 0 or not). The advantage of
using gel is that it avoids unnecessary copies, contrary to polcoef, but you
must be careful that all the conditions stated above are satisfied, otherwise

16

you will certainly get segfaults. So do not use it unless you know what you
are doing.

Note that the function GEN polcoef i(GEN P, long n, long v) does
this for you.

For instance, the pol x function is programmed as follows:

GEN

pol_x(long v)

{

GEN p = cgetg(4, t_POL); /* 4 = 2 codewords + 2 coefficients */

p[1] = evalsigne(1) | evalvarn(v);

/* set sign to nonzero and variable to v */

gel(p, 2) = gen_0; gel(p, 3) = gen_1;

/* coefficients 0*x^0 + 1*x^1 */

return p;

}

This is as good a time as any to give the list of accessors to the compo-
nents of types of GEN’s, including many that we have not met:

For V of type t VEC (vector) or t COL (column vector), V[i] is accessed
by gel(V, i). For V of type t VECSMALL, one accesses V[i] directly by
V[i]. Also useful for t VECs and t COLs is GEN vecslice(GEN V, long

y1, long y2) which is essentially the Library equivalent of V[y1..y2] in
GP.

If the vector or column vector V has components which are themselves
vectors or column vectors, to access V[i][j] you use gmael(V, i, j) (there
also exists gmael3, etc...).

For M of type t MAT, you can use the macro gel(M, j) to access the jth
column of M, since a matrix is implemented as a vector of columns. There
is no macro to access the ith row, but there is a function GEN row(GEN A,

long i) which does this for you (as an exercise, you may want to write it
yourself). To access an individual entry (line i, column j) of the matrix, you
could use gmael, since we know that a matrix is a vector of columns, but
as gmael(j, i) with i and j exchanged, which is not very elegant. Instead,
use the macro gcoeff(i, j) (which is of course aliased to gmael(j, i)).

For P of type t POL or t SER, use the macro polcoef, unless all the
conditions mentioned above (and similar ones for t SER) in which case you
may use gel, but with a shift of 2 (gel(P, m + 2) instead of polcoef(P,
m, -1)). Of course, an essential function is gsubst, seen above.

For Q of type t FRAC or t RFRAC, use the functions numer and denom for
the numerator and denominator. You could of course use gel(Q, 1) and
gel(Q, 2), but this is very bad programming practice, and in fact would
crash if at some point the fraction has simplified to an integer or polynomial.

17

For z of type t COMPLEX, use the functions real i and imag i. Same
remark as above: do not use the gel macro. Note that the functions greal
and gimag create a copy of the component you want to access, which is less
efficient.

Exercises.

1. We have mentioned that our two polgegen programs are particularly
stupidly programmed since both the factorials and the Pochhammer
symbols should be computed recursively. Try to write a much more
optimized program where first, these expressions are indeed computed
recursively, and second, where no use is made of the slightly expensive
functions gsubst and gtopoly, but instead the polynomial is created
from scratch using a similar method than the pol x example given
above, and then the coefficients are filled recursively.

2. As all orthogonal polynomials, the Gegenbauer polynomials satisfy a

linear recursion, more precisely Cα
0 (x) = 1, C

(α)
1 (x) = 2αx, and for

n ≥ 2:

Cα
n (x) =

1

n

(
2x(n+ α− 1)Cα

n−1 − (n+ 2α− 2)Cα
n−2

)
Write a C program to compute a vector of the first N Gegenbauer
polynomials using this recursion.

5 Interlude: Using C longs and ulongs in the Li-
brary

It is of course essential for efficiency to use C longs or ulongs (and doubles
for floating point computations) as much as possible. Before seeing the
specific tools that Pari has for this purpose, some important warnings.

If the operations that you perform can hold in the C long or ulong

(unsigned long) types, you can (and should) of course use directly the C
operations. Remember, however that they differ in several respects. First,
in C division always gives the quotient: 1/2 in C gives 0, while in GP it
is equal to 1/2. Second, and this is in my opinion a flaw in the initial
design of C, as in most other programming languages: division involving
negative integers truncate instead of taking the floor. Thus all of (-7)/3,
7/(-3), and -7/3 give −2, and not −3. Same remarks of course for the
remaindering operator %. Also, do not abuse of ulong as opposed to long:
it may happen that some functions which you think returns only nonnegative
integers may also return negative ones, in which case combining this result
with an ulong will create nonsense. In preparing this tutorial I got stung by
this bug because of the cbezout function, see the iswolstenfast program
in Section 7 below.

18

Second, the powering symbol ^ used in GP means something completely
different in C. If you want to compute xy where x and y are unsigned C
longs, you can use ulong upowuu(ulong x, ulong y) if you are sure that
the result will fit in an ulong, and otherwise GEN powuu (note: powss does
not exist).

Third, do not confuse C arrays with Pari vectors of type t VEC or even
t VECSMALL. If you do not use at all any constructs using GENs you may of
course use C arrays as much as you like, but it is essentially impossible (or
at least strongly ill advised) to mix C arrays and Pari vectors.

The Library gives you a few functions which compensate for the lack
of the corresponding operations in C, and which have two long arguments
and returns a long (similar functions exist for ulong): smodss (the true
remainder), sdivss rem (the true Euclidean division with remainder), maxss
and minss (which should have been called smaxss and sminss since the
corresponding functions on GENs are gmax and gmin).

The Library of course has functions to convert from some C types to GEN
and conversely. The general function to convert a C long (resp., an ulong)
to t INT is stoi (Single TO Int) (resp., utoi), the reverse being itos (resp.,
itou).

Beware that of course stoi and utoi always work, but itos or itou

may overflow if the t INT is too large.
For floating point operations, there exists the function gtodouble which

tries if possible to convert a GEN to a C double, and the function dbltor

which converts a C double to a t REAL with accuracy 64 bits (even though
double only has 53). These names are historical (I am responsible), and
dbltor should have probably been called doubletor to be consistent.

Finally, as you know from GP itself, there is the t VECSMALL type, which
is a vector which contains only C longs (as mentioned above, do not confuse
this with C arrays). Note that since the contents of a t VECSMALL are not
GENs, to access or to fill such a vector you must not use the gel (Gen ELe-
ment) macro, otherwise you will get a type mismatch, but simply ordinary
C vector notation: for instance

GEN V = cgetg(11, t_VECSMALL);

for(i = 1; i <= 10; i++) V[i] = i*i;

Note that, as in GP, operations on t VECSMALLs are rather limited.

6 Examples: Divisors, Factoring

After all, initially Pari was designed to help number theorists, so we are
going to give a few easy examples coming from number theory, and the
C-functions that we can use.

19

Recall that in our second example we defined E2(τ) = 1−24
∑

n≥1 nq
n/(1−

qn) with q = e2πiτ . If we expand the power series, we have in fact

E2(τ) = 1− 24
∑
n≥1

σ1(n)q
n ,

where more generally σk(n) is the sum of the kth power of the (positive)
divisors of n. This last function is of course preprogrammed in the Library.

The main functions dealing with factoring and divisors are (not surpris-
ingly) factor and divisors. But let us see this in more detail: the general
factoring program (at least over Q or Q(X)) is called in C simply factor,
as in GP. This is a very sophisticated program since the underlying domain
can be almost anything. If we are dealing with integers, it is more elegant
(although not compulsory) to use the specific programs available in that
case: Z factor if the input is a t INT, in which case the result is as usual
a 2-column matrix of primes and exponents, or factoru if the input is a C
ulong, in which case the result is a 2-component vector of two t VECSMALLs,
the primes and the exponents.

Of course, once known the factorization (of an integer, say), it is easy
(but not completely trivial) to obtain its divisors. The Library provides the
function divisors if the input is a t INT (more general GENs such as t POLs
are of course also supported), and divisorsu if the input is a C ulong. In
the first case the result is a t VEC, and in the second case the result is a
t VECSMALL.

Thus, the σk function could be reprogrammed as follows, assuming that
the arguments are ulongs:

GEN

mysigma(ulong n, ulong k)

{

pari_sp av = avma;

GEN D = divisorsu(n), S = gen_0;

long i, ld = lg(D);

for (i = 1; i < ld; i++) S = gadd(S, powuu(D[i], k));

/* D[i] and not gel(D, i) since D is a vecsmall */

return gc_INT(av, S);

}

Here we meet the crucial function lg which we have not met up to now:
for any GEN D whatsoever, lg(D) is the length (in words) of the object,
including codewords, so you better know the number of codewords for each
type. By far the most frequent use is for vectors/columns, in which case
lg(D) is simply one more than the number of components, since there is a
single codeword, explaining the termination instruction i < ld = lg(D).

Also some more garbage collecting information: we have said that gc GEN

not only does garbage collecting, but mainly for safety reasons, also recopies

20

the result (essential for instance when the result is an mkvecn, as we have
seen above). But if we are really sure that the final result has already
been copied (this is guaranteed by all official GP functions, here gadd), then
it is wasteful to do an additional copy (admittedly, the loss is only a few
nanoseconds). Thus, instead of the safe gc GEN, you can use instead the
function gc upto. Even better, since we know that the result is a t INT, we
can use the more specialized gc INT as we have done in the above example.

Still another aspect of garbage collecting: if your function, not only has
only C long arguments, but has a long (or even void) result, then the
garbage collecting is much simpler: we simply must put back avma to its
initial values. After an initial av = avma;, in principle it suffices at the end
instead of doing a gc GEN or gc upto, to write avma = av; This usually
works, but for technical reasons which I will not explain here it is better to
use the command set avma. For instance, in the case k = 1, if the C ulong

n is reasonably small, we can be sure that σ1(n) fits in a ulong. One can
then write (with no overflow check):

ulong

usigma1u(ulong n)

{

pari_sp av = avma;

GEN D = divisorsu(n);

ulong S = 0, i, ld = lg(D);

for (i = 1; i < ld; i++) S += D[i];

set_avma(av);

return S;

}

Note that it is essential to use set avma(av) after the final ulong re-
sult has been computed. Consider for instance the following hypothetical
program:

long

myprog(ulong n)

{

pari_sp av = avma;

GEN a, b, gR;

ulong R;

gR = Result of a complicated computation;

set_avma(av);

return (itou(gR));

}

(itou converts, if possible, a t INT into a C ulong).
While the above program will almost always work, there may be some

outside interference such as a user interrupt or other just between the last

21

two instructions, so that gR may have been corrupted. Thus, the proper
way to program the last two instructions is

R = itou(gR);

set_avma(av);

return R;

Instead of worrying about this, the library provides trivial (because
exactly equivalent to the above) garbage collecting functions for C int,
long, and ulong, of course called gc int, etc... Thus the program snippet
above should simply be written return gc ulong(av, itou(gR)), and this
is what we will do from now on. Incidentally, note that usually, but not al-
ways (see the example of iswolstenfast below) long and ulong are treated
in the same way, both in C and in the Library, but it is good programming
practice to specify ulong instead of long if it is important in a program.

7 Example: Wolstenholme Primes

In the Library there are of course C equivalents of the GP functions involving
primes, such as nextprime, isprime, etc... More subtle is the C-equivalent
of forprime, when we want to loop over primes. We choose as example the
search for so-calledWolstenholme primes. Let p be a prime such that p ≥ 11.
Wolstenholme’s theorem says that the numerator of Hp−1 =

∑
1≤a≤p−1 1/a

is divisible by p2. An interesting exercise in number theory shows that for
p ≥ 11 prime the following five properties are equivalent:

1. p3 divides the numerator of Hp−1 =
∑

1≤a≤p−1 1/a

2. p2 divides the numerator of H
(2)
p−1 =

∑
1≤a≤p−1 1/a

2

3. p divides the numerator of
∑

p/6<a<p/4 1/a
3.

4. p divides the numerator of the Bernoulli number Bp−3.

5.
(
2p−1
p−1

)
≡ 1 (mod p4).

A prime satisfying any one (or all) of these conditions is called a Wolsten-
holme prime.

We want to write a C program using the Library to search for such
primes (without giving the answer, which of course you can find instantly
by googling, only two are known, both less than 3000000). Each of the
above criteria would give a new program, but we want to focus on the
prime search. So assume that we have written a yes/no program int

iswolsten(ulong p), which knowing that p is prime, outputs 1 if p is a
Wolstenholme prime and 0 otherwise. We want to write a program which

22

ranges from p = 11 to some limit lim and outputs the Wolstenholme primes.
If iswolsten is callable from GP (which is easily done via the install com-
mand install(iswolsten,lL), where the initial letter l means that the
result is a long, which by abuse is identified with int), we would simply
write:

install(iswolsten,lL);

do(lim)=forprime(p=11,lim,if(iswolsten(p),print(p)));

We are now going to see how to do this forprime loop in the Library. We
will assume that we only work with ulong’s, although corresponding loops
exist for t INTs.

The three types and functions that one must learn are:

forprime t: This is a type which will contain the iterator which will
produce the primes.

The function u forprime init with prototype
int u forprime init(forprime t *T, ulong a, ulong b)

where the primes will run from a to b (of course a and b need not be primes).
For t INT the function is of course forprime init with two GEN arguments
replacing the two ulong arguments.

The function u forprime next with prototype
ulong u forprime next(forprime t *T)

(or simply forprime next for t INT), which as its name indicates, gives you
the next prime as an ulong, and returns 0 when the loop is finished, no
more primes to use.

Thus, to program the above forprime loop, one writes the following

void

dowol(long lim)

{

pari_sp av = avma;

forprime_t S;

ulong p;

u_forprime_init(&S, 11, lim);

while((p = u_forprime_next(&S)))

if(iswolsten(p)) pari_printf("p = %ld\n", p);

set_avma(av);

}

We have not yet seen how to print a result using the Library. One of the
most general commands is pari printf, which has more or less the same
syntax as C printf, the essential difference being that it also supports the
type GEN, which is coded with the format %Ps.

23

Note that we have written compactly while((p = u_forprime_next(&S))),
which does first the assignment of the next prime to the variable p, and sec-
ond a test to see it p is zero. We could have separated those two actions,
but it would be more clumsy.

Aside on iterators. The only reason that we need the above type
of construction is that for obvious reasons forprime does not exist in the
C language, and is not easily simulated (for instance forstep does not
exist in C but is trivially simulated by an ordinary for loop). Thus the
Library has a large number of such iterators, with essentially identical use,
corresponding to the GP iterators such as forsquarefree, forvec, forpart,
etc... For instance for forvec you have the type forvec t, the initialization
forvec init, and the iterator itself forvec next.

Now that the main program is done, it remains to write one of the
functions iswolsten. We will write the simplest one (but probably the
least efficient one), and suggest to the reader to write all the others and
compare their speed.

int

iswolsten(ulong p)

{

pari_sp av = avma;

GEN N = numer(bernfrac(p - 3));

long R = smodis(N, p);

return gc_int(av, R == 0);

}

As the last two letters indicate, the function smodis returns the remain-
der (MOD) of the division of a t INT by a C long, which is itself a long,
whence the initial s.

Note also the use of gc int, which is the C int version of gc INT seen
above, and which is exactly equivalent to set avma(av); return R == 0

as we have already mentioned above (we could even use gc bool!).

Exercise. As suggested above, write four other iswolsten programs
in the Library using the four other equivalent conditions for being a Wol-
stenholme prime, and compare their speed. Note that if you program
them directly using existing Library functions like harmonic, harmonic0,
or binomialuu, you probably will not get very far in your search.

So let us try to be efficient. We will use the criterion that p divides the
numerator of

∑
p/6<a<p/4 1/a

3, and assume that p < 231 on a 64-bit machine
(we will be happy to change the program if we reach that limit) so that the
product of two integers reduced modulo p still fits in a C ulong.

The idea is simply that if we denote by abuse of notation by a−1 any
integer which is the inverse of a modulo p, the criterion is equivalent to

24

saying that the sum of the C-integers (a−1)3 (suitably reduced modulo p)
with a ranging between p/6 and p/4 is divisible by p. Finding the inverse of
an integer modulo another is done using the extended Euclidean algorithm,
called bezout in GP and in C, but there is of course a corresponding Library
function for C long called cbezout (and the GCD is called cgcd instead of
ggcd for GEN). Thus a possible program is as follows:

int

iswolstenfast(long p)

{

long lim1 = (p+5)/6, lim2 = p/4;

long a, S = 0, ct = 0;

for (a = lim1; a <= lim2; ct++, a++)

{

long u, v, u3;

(void)cbezout(a, p, &u, &v);

/* u will be an inverse of a mod p with |u|<p */

u3 = (u*u)%p; u3 = (u*u3)%p; /* works if p < 2^31 */

S += u3; ct++; if (ct%100 == 0) S %= p;

}

return S%p == 0;

}

Note that we do not need the result of the GCDs since we know they will
all be equal to 1, so we typecast to (void) the result.

A crucial feature of this example is as follows: if p had been declared
ulong as it should, then the operations using long u, v, u3 afterwards
would be completely wrong since u may be negative. It is thus essential to
declare p as a long and not as an ulong in this program (we could also keep
p as an ulong and add after the cbezout call: while (u < 0) u += p).

There is, however, a more elegant (although sometimes very slightly
slower) way of doing the above computation, by using the Library Fl xxx

functions, or if we had t INTs instead of C longs, the Fp xxx functions.
These functions, such as Fl add, Fl mul, Fl sqr, Fl inv, etc..., assume

that their argument(s) z are all C long or ulong such that 0 ≤ z < p,
and guarantee that their result also satisfies this. All these functions are
essentially trivial, with the exception of Fl inv which calls an analogue of
cbezout to compute the inverse modulo p (not necessarily prime). We can
thus rewrite our program as follows:

int

iswolstenfast2(ulong p)

{

long lim1 = (p+5)/6, lim2 = p/4, a;

25

ulong S = 0;

for (a = lim1; a <= lim2; a++)

S = Fl_add(S, Fl_powu(Fl_inv(a, p), 3, p), p);

return S == 0;

}

It is not any faster, but is more elegant, and incidentally has the (very
slight) advantage of not being limited to 231. However, a big advantage
is that one can make it considerably faster by using the Flv inv program
which does a batch inversion modulo p using a trick due to P. Montgomery.
I leave this as an exercise for the reader.

As mentioned above, there also exist analogues of these instructions for
Pari’s t INTs, and are called perhaps improperly Fp xxx, although most of
them do not only apply to primes.

Exercise. We can completely avoid inversions and hence obtain an
even faster program using the following idea: let (ai)i≥1 be any sequence,
and define

qn =
∏

1≤i≤n

ai and pn = qn
∑

1≤i≤n

1

ai

Then of course
∑

1≤i≤n 1/ai = pn/qn, but the main point is that we have the
simple recursions with no inversions: qn = anqn−1 and pn = anpn−1 + qn−1.
Write a Library program implementing this idea for ai = 1/i3 for p/6 < i <
p/4, using Fl xxx instructions.

8 Example: Bernoulli Numbers

Considering their importance, Bernoulli numbers have always been imple-
mented in the Library, for instance by bernfrac and bernvec, which have
the same C-name. The implementation is very efficient, but to familiarize
ourselves with other types and functions in the Library, we are going to
play with much less (in fact usually ridiculously less) efficient methods for
computing them.

Example 1: Use of power series.

After all, by definition the Bernoulli numbers are defined by

x

ex − 1
=

∑
n≥0

Bn

n!
xn

We are going to reimplement bernvec, such that bernvec(N) gives theN+1-
component vector (B0, B2, . . . B2n). A possible GP program could be

mybernvec(N)=

{

26

S = x/(exp(x+O(x^(2*N+2)))-1);

return (vector(N+1,k,(2*k-2)!*polcoef(S, 2*k-2))); }

This assumes that the power series of exp(x) has been programmed,
which is of course the case, but if we make no such assumption we should
write the following:

mybernvec(N)=

{

my(E,S);

E = sum(k = 0, 2*N+1, x^k/k!, O(x^(2*N+2)));

S = x/(E-1);

return (vector(N+1, k, (2*k-2)!*polcoef(S, 2*k-2))); }

Let us see how to do this in the Library. For the first method, we first
need to know what is the C name of the exponential function, not surpris-
ingly gexp. But a new problem arises: how do we implement O(x2N+2) ?
There are a few ways to do this, but the simplest, if not the most elegant,
is to use the function zeroser with prototype GEN zeroser(long v, long

e), which returns O(Xe), where X is the variable with variable number v.
We can now easily write our program:

GEN

mybernvec(long N)

{

pari_sp av = avma;

GEN X = pol_x(0), E, S, V;

long k;

E = gexp(gadd(X, zeroser(0, 2*N + 2)), 0);

S = gdiv(X, gsubgs(E, 1));

V = cgetg(N + 2, t_VEC);

for (k = 1; k <= N + 1; k++)

gel(V, k) = gmul(mpfact(2*k - 2), polcoef(S, 2*k - 2, 0));

return gc_GEN(av, V);

}

Two things to note about this program, which otherwise is totally straight-
forward. First, note that the prototype of the exponential function gexp is
GEN gexp(GEN z, long prec), so even, as here, where prec is unnecessary
since all the computations will be done in integers, it must be included, so
we simply set it to 0. However, if instead we had needed something like
exp(x+ 1 +O(x2N+2)), writing

gexp(gadd(gaddgs(X, 1), zeroser(0, 2*N + 2)), 0);

27

would crash or give an error, since the program needs to compute exp(1),
where 1 is the exact number 1, and it cannot do this without knowing the
accuracy to which it must be computed.

A much more minor point is that we have written polcoef(S, 2*k -

2, 0) because we know that we have constructed the series S with the
variable ′x with number 0. It would perhaps be safer in other circumstances
to write polcoef(S, 2*k-2, -1), since the variable −1 always denotes the
main variable.

Let us now implement the second program. The only thing to change is
that we must reimplement exp(x), i.e., the instruction

E = sum(k=0,2*N+1,x^k/k!,O(x^(2*N+2)));

Again not caring about efficiency, we simply write the following program
snippet, where we recall that X has already been set to pol x(0):

E = zeroser(0, 2*N + 2);

for (k = 0; k <= 2*N + 1; k++)

E = gadd(E, gdiv(gpowgs(X, k), mpfact(k)));

Let us now be a little more efficient. Even in GP, our original mybernvec
program can be considerably improved (notwithstanding the fact that we
should not recompute (2k − 2)! each time but by a recursion). There exists
the function serlaplace (simply laplace in the Library) which does exactly
what we want and gives a one-liner:

mybernvec(N)=Vec(serlaplace(x/(exp(x+O(x^(2*N+2)))-1)));

Exercises.

1. Programming this in the Library is of course trivial. Improve the
efficiency of your program by noting that x/2 + x/(exp(x) − 1) is an
even function, so that you can avoid doing serlaplace on half of
the coefficients since they vanish. For this, reprogram the Library’s
serlaplace program so that it skips the odd-degree coefficients.

2. It is of course much better to write

x = (ex − 1)
∑
n≥0

Bn

n!
xn ,

and by expanding the series product, to deduce the well-known recur-
sion for Bernoulli numbers:

B2n = − 1

2n+ 1

−n− 1

2
+

∑
0≤j≤n−1

(
2n+ 1

2j

)
B2j

 .

28

Write a new C program for computing bernvec(N) using this recur-
sion. For 1/2, use ghalf, and For the binomial coefficients, use the
function ulong binomialuu(long n, long k), or if you feel like it,
reprogram it yourself!

3. A much less trivial formula is as follows:

B2n = − 1

(n+ 1)(2n+ 1)

∑
1≤j≤⌊n/2⌋

(2n− 2j + 1)

(
n+ 1

2j + 1

)
B2n−2j

for n ≥ 2, which has the advantage of needing only n/2 terms instead
of n in the previous recursion. Write another C program using this
recursion together with B2 = 1/6, and compare its speed with the pre-
vious one. To represent 1/6, you may either use the basic operations,
necessarily using stoi or something similar, or a useful function GEN

sstoQ(long n, long d) which creates n/d.

Example 2: Use of Truncated Pascal Matrices

Consider Pascal’s triangle with the main diagonal of 1’s suppressed, in
other words the matrix MN = (mi,j)1≤i≤N with mi,j =

(
i

j−1

)
if i ≥ j and 0

otherwise. For instance

M4 =


1 0 0 0
1 2 0 0
1 3 3 0
1 4 6 4


It is an amusing theorem that the first column of the inverse of this matrix
is exactly the vector of all Bernoulli numbers Bi for 0 ≤ i ≤ N (thus to
simulate bernvec one must then extract only the B2i). This is of course an
incredibly inefficient way of computing them, but let us program this in C,
the GP script for the computing the matrix being trivially

M(N)=matrix(N,N,i,j,if(i<j,0,binomial(i,j-1)));

Remember that a matrix is a (row) vector of column vectors. We thus
write the following:

GEN

mybernvec2(long N)

{

pari_sp av = avma;

GEN M, R, V;

long j;

M = cgetg(2*N + 2, t_MAT); /* matrix with 2N+1 columns */

for (j = 1; j <= 2*N + 1; j++)

29

{

GEN C = cgetg(2*N + 2, t_COL); /* Prepare space for a column */

long i; /* with 2N+1 entries */

for (i = 1; i <= 2*N + 1; i++)

{

if (i < j) gel(C, i) = gen_0;

else gel(C, i) = binomialuu(i, j - 1);

}

gel(M, j) = C;

}

R = gel(ginv(M), 1); /* get first column */

V = cgetg(N + 2, t_VEC);

for (j = 0; j <= N; j++) gel(V, j + 1) = gel(R, 2*j + 1);

return gc_GEN(av, V);

}

It is good programming practice to include the instruction gel(M,j)=C

after having filled the column C, although it would also work if we included
it before.

The new instructions that we meet here are first binomialuu(long n,

long k), which computes as a GEN the binomial coefficient
(
n
k

)
, and the

function ginv for inverse.

Exercise. There exists a function matpascal which returns the com-
plete Pascal matrix of binomial coefficients. To do the above in GP you can
simply type the one-liner

mybernvec3(N)=((matpascal(N)-1)[^1,^-1]^(-1))[,1];

Program this in the Library.

9 Interlude: Fun with Pari Types

To get a feel of how to use most Pari types, we will just for fun reimple-
ment the standard function exp(x), with no attempt at efficiency or even
correctness in certain cases, but just so as to introduce new functions. The
driver function is uninteresting, and would look something like:

GEN

mygexp(GEN x, long prec)

{

pari_sp av = avma;

GEN RES = gen_0; /* to keep the compiler happy */

long tx = typ(x);

switch(tx)

{

30

case t_INT: RES = mygexpint(x, prec); break;

case t_REAL: RES = mygexpreal(x, prec); break;

case t_COMPLEX: RES = mygexpcomplex(x, prec); break;

... other types

default: pari_err(e_MISC, "mygexp not implemented for this type");

}

return gc_GEN(av, RES);

}

Thus, the function typ gives the type of an object as a long (recall that in
GP the function type gives a string such as "t INT").

We thus need to implement exp(x) for the types that we want. It is
however not necessary to have one function per type. A very useful function
when the input is scalar is the Library function GEN gtofp(GEN z, long

prec) which converts t INT, t FRAC, and t QUAD to real or complex numbers
with precision prec. Note that on t REAL and t COMPLEX inputs it changes
the accuracy to be prec, which can increase or decrease the accuracy of the
input. Thus, we can considerably simplify the switch in the above program
and write for instance

case t_INT: case t_FRAC: case t_QUAD: case t_REAL: case t_COMPLEX:

RES = mygexpcomplex(gtofp(x, prec), prec); break;

(or include the gtofp instruction in the function mygexpcomplex itself). If
we do not want to change the accuracy of a t REAL or of a t COMPLEX with
already inexact components, we should of course be a little more careful.

Exercise. When you are a little more familiar with Library program-
ming, look at the implementation of gtofp, and write a new one which does
not change the accuracy of inexact components.

A completely naive way of implementing the mygexpcomplex function is
similar to what we did for E2:

static GEN

mygexpcomplex(GEN x, long prec)

{

GEN S = real_1(prec), xn = real_1(prec), factn = xn;

long B = prec2nbits(prec), n = 0;

while (gexpo(xn) - gexpo(factn) > -B)

{

n++; xn = gmul(x, xn); factn = mulsr(n, factn);

/* xn will contain x^n and factn will contain n! */

S = gadd(S, gdiv(xn, factn));

}

return S;

}

31

A few remarks:

1. Since mygexpcomplex is a subprogram of the driver program mygexp,
it is good programming practice to declare it static. For the same
reason, since garbage collecting will be done in the the driver program,
it would be a waste of time to do it here.

2. Note that to avoid any worry with the size of n!, we compute it as a
t REAL instead of a t INT, although in practice this will never be a
problem.

3. Note the use of the specific mulsr function (multiply C long by t REAL)
instead of the generic gmulsg. Although only infinitesimally faster, it
is a good programming habit to use such specific functons whenever
possible.

Note that as written, this program could be incorrect since the quantity
xn/n! may first increase in size before decreasing and tending rapidly to 0.
As an exercise, you may want to find if the program is really incorrect, and
for which complex values of x.

The next interesting types for which the exponential function can be
applied are polynomials, power series, and rational functions, of types t POL,
t SER, and t RFRAC respectively. In the same way that gtofp(z, prec)

converts integers, reals, fractions, and complex numbers to a real/complex
with accuracy prec, the function GEN toser i(GEN x) converts polynomials
and rational functions series to the t SER type, essentially by adding O(Xd)
(i.e., zeroser(v, d)), where X is the main variable of the polynomial or
rational function, for a suitable integer d, the default series precision. But
contrary to real precision, which is specified in all functions involving non-
exact complex numbers as a last argument often (but not necessarily) named
prec, here there exists a default series accuracy called precdl which is a
reserved identifier name. Thus toser i does not have a second argument
giving the series precision, but uses precdl by default (for fun, ask us about
the meaning of this ending “dl”). Of course, nothing prevents you from
adding zeroser(v, d) yourself to your polynomial or rational function,
with a series precision d of your own choosing.

To summarize, one could use the code snippet

case t_POL: case t_RFRAC: case t_SER:

RES = mygexpser(toser_i(x), prec); break;

It remains to program mygexpser, hence first a small briefing on the
t SER type. Let z be a GEN of this type, and for brevity let us assume that
it is not the zero series. As for polynomials you use varn(z) to obtain
the variable number of the main variable of z, and use valser to obtain
the valuation and lg(z) - 2 to obtain the number of terms in the series

32

(since there are two codewords, you must subtract 2). For instance, the
series z = 2/x + 3 + 4x2 + O(x3) has varn(z)=0 since the variable is x,
valser(z)=-1, and lg(z) = 2 + 4 = 6 since the coefficients are (2, 3, 0, 4).

Finally, note that, as in GP, you access coefficients of z using polcoef,
and as usual do not forget to include the variable number at the end (or −1
if it is the main variable).

The beginning of the program could be as follows (assuming that we
know that the input z is of type t SER, or has been converted to that type
using toser i):

GEN mygexp(GEN z, long prec);

static GEN

mygexpser(GEN z, long prec)

{

GEN S, E = gen_1;

long v = valser(z), vkeep = v, n, N;

if (v < 0)

pari_err(e_MISC, "exponential of a power series with negative valuation");

if (v == 0)

{

GEN a0 = polcoef(z, 0, -1);

z = gsub(z, a0); v = valser(z); E = mygexp(a0, prec);

}

Self-explanatory: one cannot compute exp(z) with v < 0, but if v = 0, z
is of the form a0 + a1X + · · · , so we write exp(z) = exp(a0) exp(z − a0),
where z−a0 will now have strictly positive valuation. However, to compute
exp(a0) we need an accuracy with which to make the computation, so we
realize that we need to add a prec argument to the function, which initially
was not necessary (and is not necessary if v > 0, in other words a0 = 0).
We keep E = mygexp(a0, prec) (initialized to gen 1 by default) so as to
multiply by it at the end. Note the necessity in C of declaring the forward
reference to mygexp.

We now deal with a series with strictly positive valuation v. If v = 1,
the number of terms that we must take in the exponential series is exactly
the number of significant terms of the series, which is lg(z) - 2, except
when z=0, in which case one must take one term. If v > 1, the number of
necessary terms is the ceiling of this quantity divided by v. Thus, we finish
our program as follows (and we lazily compute zn/n!):

N = (maxss(1, lg(z) - 2) + v - 1)/v; /* ceiling of a quotient in C */

S = gen_1;

for (n = 1; n <= N; n++) S = gadd(S, gdiv(gpowgs(z, n), mpfact(n)));

return gmul(E, S);

33

}

Of course, in practice we compute zn/n! more intelligently exactly as we did
for mygexpcomplex, and if we want to be clever, we return vkeep > 0 ? S : gmul(E, S).

There is in fact a very subtle but nasty bug in the above program. Try
applying it to the series z = π + x + O(x3) for instance. If you have been
lazy and not written the C program, you can also do it directly in GP, the
same bug appears, as shown by the following GP example:

? z = Pi + x + O(x^3)

% = 3.1415926... + x + O(x^3)

? a0 = polcoef(z, 0); z -= a0

% = 0.E-37 + x + O(x^3)

? valuation(z, x)

% = 0

Unfortunately, or perhaps fortunately, 0.E-37 is not considered to be
zero, so the valuation of z-a0 is still 0, unfortunate if we want to com-
pute its exponential. The way out of this is trivial once we understand the
problem: under GP one uses the serchop(z,1) function, which applied to
our z will return the desired x + O(x^3), and the same is valid in Library
mode where you use GEN serchop(GEN z, long n). Thus, we must include
the command z = serchop(z, 1); just after z = gsub(z, a0), or more
simply replace z = gsub(z, a0) by z = serchop(z, 1) to be sure that no
constant term remains in z.

A word about p-adic numbers, type t PADIC. As mentioned in the Pari
manual, their implementation makes them slower than t INTMODs, and even
for those it is usually much faster to do operations directly on t INTs, and
do the modulo operations at the end. On the other hand, it is a fact that
essentially all complex functions have p-adic analogues, and in that case it
is much simpler to use the t PADIC type.

A p-adic number z is represented as pvu, where u ∈ Zp is either 0 or a
p-adic unit, and u is defined modulo pd, i.e., is of the form u = a0 + a1p +
a2p

2 + · · · + ad−1p
d−1 + O(pd). The Library functions padic p, padic pd,

padic u, precp, and valp return respectively p, pd, u, d, and v. Analogously
to the Library version of O(Xe) being zeroser(v, e), the Library version
of O(pe) is zeropadic(p, e).

We will not give explicitly examples with p-adic numbers, but simply
mention that the mygexppadic program that we must write is very anal-
ogous, to mygexpser: it suffices to replace the series valuation valser by
the p-adic valuation valp, to note that contrary to series one (probably)
cannot compute the exponential of a p-adic with zero valuation, and that
the number of significant terms which was lg(z)-2 is now simply precp(z).
However, beware that now n! has a considerable influence on the number of

34

terms to take in the iteration. I leave the explicit writing of the program as
an exercise.

The final types to which one can think of applying mygexp are linear
algebra types, in particular t VEC, t COL, and t MAT. For t VEC and t COL,
the only reasonable thing to do is to compute the exponential component-
wise. The program is thus trivial:

GEN mygexp(GEN z, long prec);

static GEN

mygexpveccol(GEN z, long prec)

{

GEN V = gcopy(z); /* We should be more clever, see below */

long i, lv = lg(V);

for (i = 1; i < lv; i++) gel(V, i) = mygexp(gel(z, i), prec);

return V;

}

Even though we lose time, the advantage of copying z instead of creating
a new vector from scratch, is that it copies both the type (t VEC or t COL,
but even t MAT would work since the program is recursive) and the length.

We could do slightly better by using shallowcopy instead of gcopy since
this only copies the pointers, not the tree. But of course, the proper way
is simply to replace V = gcopy(z) by V = cgetg(lg(z), typ(z)). This
exact instruction exists as cgetg copy in the Library with prototype GEN

cgetg copy(GEN z, long *plz), where plz is a pointer which will contain
the length of z. So the above program should more properly be written:

static GEN

mygexpveccol(GEN z, prec)

{

long lz, i;

GEN V = cgetg_copy(z, &lz);

for (i = 1; i < lz; i++) gel(V, i) = mygexp(gel(z, i), prec);

return V;

}

Two remarks concerning applying functions to vectors. In the initial
Pari design, the philosophy was (and still is in large part) that any operation
which could make some kind of sense should be allowed. In particular,
applying functions such as transcendental functions to vectors makes sense
if we apply them componentwise as we did above. This was probably a bad
decision, in particular it may hide bugs. Indeed, since there now exists the
GP function apply, it is not necessary to have this behavior since you can
simply write for instance apply(exp, V).

35

In fact, the Library gives you macros which allow you to do exactly this
in C. For instance, the above be written much more simply as

static GEN

mygexpveccol(GEN x, prec)

{ pari_APPLY_same(mygexp(gel(x, i), prec)); }

which will produce exactly the same effect as above, keeping the same type
(usually t VEC or t COL), or

static GEN

mygexpveccol(GEN x, prec)

{ pari_APPLY_type(t_VEC, mygexp(gel(x, i), prec)); }

if we want to impose a specific type, here t VEC (there also exist pari APPLY long

for t VECSMALL).
Note that these instructions are very fragile, and have the following

constraints:
– the GEN variable must be called x, and the loop variable must be called

i and should not be declared.
– The return statement is included, so do not add one.
We will see a further use of these pari APPLY commands in Section 10.

Concerning the final type t MAT, one could try to write a program for
the exponential of a matrix, and not simply an element-wise exponentiation,
but we will not do this here.

10 Adding a Function to the Library

We are now going to implement a small useful function which would deserve
to be in the library, and explain how to add it so that it becomes part of
your personal version of Pari/GP and directly callable by GP without any
install.

This new function is fracdep, a generalization of lindep. Given two real
or complex numbers x and y, we would like to know if there exist reasonably
small integers a, b, c, and d such that ad− bc ̸= 0 and y = (ax+ b)/(cx+d),
i.e., if x and y are linked by a linear fractional transformation, and which
returns that rational function if yes, and 0 otherwise. We even want a
vectorized version, where we can test simultaneously if some element of a
first vector is linked to some element of a second vector. This of course is
easily done as a GP script, but we want to include it in the library.

Testing if y = (ax + b)/(cx + d) is equivalent to testing whether xy, y,
x, and 1 are Q-linearly dependent, which is done with the function lindep

in GP, or lindep0 in the Library. Recall that the GP lindep has a second
flag argument, by default 0, if we want to specify some accuracy to check

36

linear dependence, so we will also use this flag in lindep0. We will also use
a trick suggested by Bill to add an irrational number to the list to check
for correctness of the lindep output. This number must of course not be
related to the inputs. We are going to use Euler’s constant γ (Euler() in
GP, and mpeuler(prec) in the Library) even though it is not known to be
irrational, since it probably will never occur in the use of fracdep (if it did,
simply use another constant).

static int

is_complex_type(GEN z)

{

long t = typ(z);

return is_real_t(t) || (t = t_COMPLEX &&

is_real_t(typ(gel(z, 1))) && is_real_t(typ(gel(z, 2))));

}

static GEN

fracdep_i(GEN x, GEN y, long flag, long prec)

{

GEN V, a, b, c, d, X, N, D;

if (!is_complex_type(x)) pari_err_TYPE("fracdep", x);

if (!is_complex_type(y)) pari_err_TYPE("fracdep", y);

V = lindep0(mkvec5(mpeuler(prec), gmul(x, y), y, x, gen_1), flag);

if (!gequal0(gel(V, 1))) return gen_0;

/* linear dependence with gamma, highly implausible */

c = gel(V, 2); d = gel(V, 3); a = gel(V, 4); b = gel(V, 5);

if ((gequal0(a) && gequal0(c)) || gequal(gmul(a, d), gmul(b, c)))

return gen_0;

/* If a=c=0, fixed rational b/d, if ad-bc=0 also a constant, wrong */

if (signe(c) < 0) { c = gneg(c); d = gneg(d); }

else { a = gneg(a); b = gneg(b); }

/* So as to always have c >= 0 */

X = pol_x(0); D = gadd(gmul(c, X), d); N = gadd(gmul(a, X), b);

return gdiv(N, D);

}

Remarks.

1. Since iscomplex already exists in the Library but meaning something
completely different, viz., not real, we name is complex type our aux-
iliary function, where we use the function is real t(t) which checks
if the type t is one of t INT, t REAL, or t FRAC.

2. Since type errors in functions are so common, there exists a specific
error handling function pari err TYPE as above, whose first argument

37

is a string, typically the function name, and the second is a GEN, the of-
fending argument of the function. If we had used pari err(e MISC,...),
it would have been awkward to also print the offending arguments.

3. We use the function signe on the variable a because we are guaranteed
by lindep that a will be a t INT (in fact, because of this guarantee,
we could also use negi instead of gneg in the definition of a and b).
Indeed, the macro signe may crash on other types, so in that case
use the more general function gsigne which tries to give a sign to an
object of any sign (note that this French name is used in part to avoid
using sign, which could be used on C longs in certain cases).

4. Instead of writing gadd(gmul(c, X), d) etc..., it is preferable (faster
and simpler) to use a short-hand called GEN deg1pol(GEN c, GEN d,

long v), or even better the shallow version with no copying deg1pol shallow,
so we do not need X and simply write:

D = deg1pol shallow(c, d, 0); N = deg1pol shallow(a, b, 0);

We can now easily write the vector version in a recursive manner, using
the pari APPLY same function seen above:

GEN fracdep(GEN Vx, GEN Vy, long flag, long prec);

static GEN

fracdep_left(GEN x, GEN Vy, long flag, long prec)

{ pari_APPLY_same(fracdep(gel(x, i), Vy, flag, prec)); }

static GEN

fracdep_right(GEN Vx, GEN x, long flag, long prec)

{ pari_APPLY_same(fracdep(Vx, gel(x, i), flag, prec)); }

GEN

fracdep(GEN Vx, GEN Vy, long flag, long prec)

{

pari_sp av = avma;

GEN R;

if (typ(Vx) == t_VEC) R = fracdep_left(Vx, Vy, flag, prec);

else if (typ(Vy) == t_VEC) R = fracdep_right(Vx, Vy, flag, prec);

else R = fracdep_i(Vx, Vy, flag, prec);

return gc_GEN(av, R);

}

As usual, if you have included it in the Library tree, for instance in
the file src/basemath/bibli1.c which already contains lindep, you can
use this function from GP after typing install(fracdep, "GGD0,L,p");,

38

where we recall that D0,L, means that the third argument is a long which
defaults to 0 if it is not given. But we want to do more, and install it in our
version of the library without needing to do any install.

For this, you need to do all of the following:

1. Add the name of the function with all declarations (here GEN fracdep(GEN

Vx, GEN Vy, long flag, long prec);) in the file src/headers/paridecl.h,
if possible near similar functions, in the present case near lindep0.

2. Create a description file having the GP name of your function, and add
it to the directory src/functions/xxx containing similar functions.
In our case, create a description file (we will see how below) called
fracdep, and put that file in the directory src/functions/linear algebra.

3. Recompile your GP tree after either doing a completely new ./Configure,
or more simply after doing ./Configure -l which simply looks for
new files. Your new function should now be available.

The way to write a description file is explained in detail in the Library
manual, but we simply give the present example, with a few comments, and
it can easily be taken as a template.

Function: fracdep

Section: linear_algebra

C-Name: fracdep

Prototype: GGD0,L,p

Help: fracdep(x,y,{flag=0}): look whether y is a reasonably simple

expression of the form (ax+b)/(cx+d), return 0 otherwise. x and y

can be either scalars or vectors.

Doc: look whether $y=(ax+b)/(cx+d)$ for reasonable (a,b,c,d), and

return 0 otherwise. x and y can be either scalars or vectors.

\kbd{flag} is as in \kbd{lindep}.

\bprog

? fracdep(zeta(2), Pi^2)

% = 6*x

? fracdep(Pi, (3*Pi + 4)/(Pi + 1))

% = (3*x + 4)/(x + 1)

? fracdep(Pi, exp(1))

% = 0

? V1 = [Pi^2, Pi, exp(1)]; V2 = [tanh(1/2), asin(1/2), zeta(2)];

? fracdep(V1, V2)

% = [[0, 0, 1/6*x], [0, 1/6*x, 0], [(x - 1)/(x + 1), 0, 0]]

@eprog

39

The template is self-explanatory. The C-name does not have to be the
same as the GP name (although it is preferable); the prototype is of course
what you type in the install command. Help: (the colon is compulsory)
is the message that you obtain when you type in GP ?fracdep, with a sin-
gle question mark, so simply write text, you cannot use TEX . Doc: (also
compulsory colon) is the message that you obtain when you type a double
question mark ??fracdep. Here the message can contain some very prim-
itive TEX (certainly not Latex nor amstex). In particular you can have
mathematical formulas between dollar signs, and code snippets or other in
typewriter mode tt using the macro \kbd, for KeyBoarD.

Crucial point: for technical reasons, all the lines in Help: and Doc:

(apart of course from the first) MUST begin by a whitespace, as above.
After these descriptions, you may optionally add some programming ex-

amples (still keeping the rule that every line must begin with a whitespace),
or simply some additional comments. The comments are in the same prim-
itive TEX language as in the Doc: description, and the programs are in a
special verbatim mode beginning by \bprog and ending with @eprog as
above.

Finally, you may want to add tests, either by adding tests to an existing
test file, or by creating a new one. In the present case, for such a simple
function it is not necessary to create a new one, so we will add tests to
the test function for lindep, which is a very close relative. For this, you
must edit the file lindep in the directory src/test/in/, and add the tests
somewhere in the file (if the file says keep errors at the end, do that of
course, but not the lindep file). For instance add the following (or if you
prefer the examples given in the above documentation):

fracdep(zeta(2),Pi^2)

fracdep(Pi,(3*Pi+4)/(Pi+1))

fracdep(Pi,exp(1))

fracdep(Pi,[1/(Pi+1),exp(1),sumalt(n=1,(-1)^n/(2*n-1))])

Now go to the head of the Pari source tree and type make test-lindep.
You will of course get several error messages, the most important saying
that files explain problems in diff format in a directory which should be
pari/Olinux-x86 64 if you are on a standard Linux system. In that di-
rectory, look at the file lindep-sta.dif and check that the new results
(normally in green) are correct. Here you should see

! 6*x

! (3*x + 4)/(x + 1)

! 0

! [1/(x + 1), 0, -1/4*x]

(ignore the error concerning Total time spent).

40

Wemust now patch the output file (which is in the directory src/test/32,
but you should never modify these files yourself, only look at them if you
want), using the patch command as follows:

patch -p1 < Olinux-x86_64/lindep-sta.dif

make test-lindep

After the patch do another make test-lindep and look at the output file
to see that all is OK.

11 A Word about Input/Output

Up to now, for simplicity we have not considered input/output in detail. As
already mentioned, the Library provides the very versatile function pari printf,
which behaves in large part like printf, as well as pari flush(), roughly
equivalent to fflush(stdout). As for printf, you first specify the format,
using for instance %d, %ld, etc..., but in addition you have the specific %Ps to
print an arbitrary GEN. I reproduce the example from the Libpari manual:

pari_printf("x[%d] = %Ps is not invertible!\n", i, gel(x, i))

Concerning input, you can use GEN gp read str(const char *s), or
GEN gp read stream(FILE *file) to read from a file. I refer to the manual
for a full explanation.

There are also numerous functions for handling strings, in particular to
convert strings to GEN and conversely. In the Library, a GEN containing a
string is of type t STR. To convert a string to this type, the basic func-
tion (there are many others) is GEN strtoGENstr(const char *s). To
concatenate strings you have gconcat and gconcat1 which are the library
equivalent of GP’s concat(x,y) and concat(x), but it is in general better
to use shallow versions which only copy the head of the GEN tree and not
its components, here shallowconcat and shallowconcat1 (there are a few
other shallow functions such as shallowcopy instead of gcopy).

However in general, it is better to create a t VEC, fill it with strings as
you go along, and do a gconcat1 or a shallowconcat1 at the end to obtain
your final string.

Another string function is strsplit if you want to split a string into its
component characters.

Just for fun, here is an example: recall that the output of contfrac(z)
for a real number z is a vector containing the simple continued fraction of
z with the number of terms depending on the accuracy of z, i.e., the vector
[a 0,a 1,...,a n] such that z = a0 + 1/(a1 + 1/(a2 + · · · + 1/an)), with
the a i strictly positive for i ≥ 1. We are going to write a simple-minded
program which converts such a vector to a string. We note that there are
n + 1 integers, n times the string ”+1/”, and n − 1 pairs of opening and
closing parentheses, for a total of 4n− 1 strings to concatenate.

41

GEN

cftochar(GEN V)

{

GEN R, pus = strtoGENstr("+1/");

GEN op = strtoGENstr("("), cp = strtoGENstr(")");

long n = lg(V) - 2, i, ct;

if (n == 0) return strtoGENstr(""); /* empty string */

R = cgetg(4*n, t_VEC);

gel(R, 1) = gel(V, 1); ct = 1;

for (i = 1; i <= n; i++)

{

ct++; gel(R, ct) = pus;

if (i < n) { ct++; gel(R, ct) = op; }

ct++; gel(R, ct) = gel(V, i + 1);

}

for (i = 1; i <= n - 1; i++) { ct++; gel(R, ct) = cp; }

return shallowconcat1(R);

}

Remark: Assume that we re not able to compute the exact size of the
vector that we need. In that case we reserve a vector which is guaranteed to
be at least as long as what is needed. Then, before the final shallowconcat1
or gconcat1 we must correct for the exact length using the function setlg,
otherwise there will be garbage on the Pari stack leading to a segfault. For
instance, at the end of the above program we know that ct will contain the
real length of the vector (1 less than the number of words it occupies). Thus,
if initially we had written for instance R = cgetg(6*n, t VEC), before the
final concatenation we would write setlg(R, ct + 1) (this wastes 2n words
on the stack, but at least the stack is not corrupted).

Exercises.

1. Same as above, but instead output the character string s which printed
in GP with print(s) will print the TEX giving the continued fraction
(hint: trivial, simply change the definitions of the variables pus, op,
and cp).

2. It is in fact better to use the Library struct pari str, with self-
explanatory functions str_init(&S, 1), str putc, str puts, and
str printf, and whose string content is S.string. Rewrite the
above programs using these functions instead.

3. Modify these programs so that when a0 = 0 in the continued fraction,
it does not print the initial 0+.

42

12 A Word about Assignments

There exist assignment functions in the Library, in case you want to put
the contents of some x into an existing GEN z of type t INT or t REAL, for
instance affii, affir, affrr, affsi, affsr, etc..., where the last two letters
indicate the types of x and z respectively (note that for instance affri does
not exist, if you want to convert a t REAL to a t INT you must use Library
equivalents of floor/ceil/round programs).

Assignments are not often used, so let me give a somewhat artificial
example of use. Recall that one uses mpfactr in case we want to avoid a
possibly expensive use of mpfact, so as to have a real approximation. In
the same way, the function harmonic(n) (same name in the Library) gives∑

1≤j≤n 1/n, and we would like to have a function harmonicr(n) which
computes this sum as a real number, which is of course much faster as soon
as n is large (for simplicity we do not consider harmonic(n,k) with k > 1).

A trivial GP program to do this is simply harmonicr(n)=sum(j=1,n,1./j)
or harmonicr(n)=sum(j=1,n,1/j,0.), the latter being slightly slower but
more accurate. In the Library one would write

GEN

harmonicr(ulong n, long prec)

{

GEN S = real_0(prec);

long j;

for (j = 1; j <= n; j++) S = gadd(S, sstoQ(1, j));

return S;

}

plus of course some garbage collecting (recall that sstoQ is a very practical
function for creating small rational numbers).

As always in a very long loop, one should be careful about the interme-
diate size of the stack, and as in the E2 example of Section 3, one should
add something like if (gc needed(av2, 1)) gc all(...) (in fact here
gc GEN since only S needs to be preserved).

But there is another way using assignments:

GEN

harmonicr(ulong n, long prec)

{

GEN S = cgetr(prec);

long j;

pari_sp av = avma;

affsr(0, S);

for (j = 1; j <= n; j++)

{ affrr(gadd(S, sstoQ(1, j)), S); set_avma(av); }

43

return S;

}

We do not have to worry about the stack since it it cleared at each iteration.

Warning: You may wonder why, unlike in the previous program, we
did not initialize S directly at the beginning by S = real 0(prec), thus
avoiding the additional affsr(0, S). The reason is that whatever prec is,
real 0(prec) will only allocate 2 words, the two codewords, so it cannot
contain any other real number than 0. (one could think of changing this
behavior). To avoid this problem, we could initialize S to real 1(prec)

instead, and begin the summation at j = 2.

Note that there are faster ways to implement this sum, but this is not
the purpose of this example. However, I must mention that the use of the
logarithmic derivative of the gamma function (psi(z) in GP and gpsi(z) in
the Library) is much faster (and more precise), as soon as n is more than
a few hundred, using the formula Hn = ψ(n + 1) + γ, which is trivial to
implement in the Library as a one-liner.

13 Library Use of sumnum, intnum, etc...

We are now going to see how to translate into C GP constructs such as
sumnum, intnum, derivnum, etc... To take a specific example, assume that
we want to compute the Mellin transform of the Bessel function K0, in other
words

M(s) =

∫ ∞

0
ts−1K0(t) , dt

In GP one would write this function as:

M(s)=intnum(t=0,[oo,1],t^(s-1)*besselk(0,t));

We now want to write this in C, either to export it as a new function of the
Library, or because we need to use it inside some other program. A cheat
way of doing this is to call the gp2c compiler which will do this for you: put
the above in a file file.gp, say, and type gp2c file.gp > file.c. You
will see that before writing the function itself, gp2c has created two auxiliary
functions, probably called something like anon 0 and wrap anon 0. It is in
fact sufficient to have a single auxiliary function as follows. To compute the
integral, we need to know argument s, but also the working accuracy prec

which may or may not be related to the accuracy of s or t. We thus write
the following function which computes the integrand:

static GEN

_auxM(void *E, GEN t)

{

44

pari_sp av = avma;

GEN s = gel(E, 1), sm1 = gsubgs(s, 1);

long prec = itos(gel(E, 2));

return gc_upto(av, gmul(gpow(t, sm1, prec),

kbessel(gen_0, t, prec)));

}

(As it happens, the C-name of the K-Bessel function is not besselk but
kbessel. Remember, to find the C-name of a function, in GP simply type
??function, and the C-name or C-names will be at the end). In the above, E
will in fact be a vector containing the list of auxiliary arguments used by the
function, here s and the accuracy prec, and t is the variable of integration.
In general E can be absolutely anything (not necessarily a vector of even a
GEN), and can be put to NULL if there are no auxiliary arguments.

It is good programming practice to use names starting with underscore
“ ” for auxiliary functions such as this, which people do not want to see
outside the source code.

The program for the functionM(s) (for which we will use a longer name)
is then simply

GEN

MellinBesselK0(GEN s, long prec)

{

pari_sp av = avma;

GEN R = intnum(mkvec2(s, stoi(prec)), _auxM, gen_0,

mkvec2(mkoo(), gen_1), NULL, prec);

return gc_upto(av, R);

}

In the above, note mkoo() which gives +∞ (mkmoo() would give −∞). The
prototype for intnum (and similar functions) begins with GEN intnum(void

*E, GEN (*eval)(void*, GEN),...). The first argument E is any C object
which will contain all the auxiliary data that the function needs, and in our
case we will use a two component vector containing s and the accuracy prec

which needs to be converted to a GEN. The second argument is the name of
the function with a single GEN argument which will compute the integrand.

To emphasize that E can be any valid C object, we could for instance
define a struct with two entries:

typedef struct

{ GEN z;

long prec;

} mys_t;

mys_t S;

S.z = s; S.prec = prec;

45

In the calling program we would replace mkvec2(s, stoi(prec)) by (void*)&S,
and in auxM we would replace s=gel(E,1); prec = itos(gel(E, 2)) by
mys t *m = (mys t*)E; s = m->z; prec = m->prec.

Exercise. Knowing that the prototype of the suminf function is GEN

suminf(void *E, GEN (*eval)(void*, GEN), GEN a, long prec), write
a C Library program implementing the function E2(τ) as written in the first
GP script for E2. Note that here the auxiliary function will only depend on
q and n, so the accuracy prec does not need to be added to E.

As a second example, we will see how to use the powerful summation
program sumnum correctly. Let us first see how to use it in a trivial way. In
GP we can write Z(s)=sumnum(n=1,1/n^s). The sumnum algorithm is quite
robust, but we cannot expect to have full precision except when s is an
integer. In any case, that is not the point, we only want to see how to use
it in Library mode.

As usual, we need an auxiliary program, which will be very similar to
the previous one:

static GEN

_auxZE(void *E, GEN n)

{

pari_sp av = avma;

GEN s = gel(E, 1);

long prec = itos(gel(E, 2));

return gc_upto(av, gpow(n, gneg(s), prec));

}

The driver program is simply:

GEN

ZE(GEN s, long prec)

{

pari_sp av = avma;

GEN R = sumnum(mkvec2(s, stoi(prec)), _auxZE, gen_1, NULL, prec);

return gc_upto(av, R);

}

We now consider an example where we must tweak sumnum so that if
gives the correct result, even in GP.

Recall that we defined the Pochhammer symbol by (a)n =
∏

0≤j<n(a+j),
which is trivial to program, both in GP and in C, as we have done above in
the Gegenbauer example in Section 4. We would like to compute numerically

S =
∑
n≥0

(−1/2)2n
n!2

46

(we have S = 4/π).
This is a slowly convergent series, so we cannot use suminf. To use

sumnum, it is necessary that the nth term be defined for real n, not only
integer n. It is easy to transform the summand using the gamma function
since (a)n = Γ(a+n)/Γ(a) and n! = Γ(n+1). But this is not sufficient since
sumnum uses large values of n which will overflow the gamma function, and
even it it does not, it will entail a huge loss of accuracy. So finally, we use
the formula

(−1/2)2n
n!2

= exp(2(log(Γ(n− 1/2))− log(Γ(−1/2))− log(Γ(n+ 1))))

and incidentally recall that Pari has the function log(Γ(z)) programmed as
lngamma (glngamma) in the Library).

If in GP we write sumnum(n=0,exp(2*(lngamma(n-1/2)...))) we will
get absolute nonsense. The reason is that sumnum needs to increase the
working accuracy to do its magic, and it does not increase the accuracy of
n (which I repeat will not be an integer anymore), which in my opinion is
a bug. Thus the final GP program which works is the following, where for
efficiency we remove the exp(−2 log(Γ(−1/2))) = 1/(4π) from the sum:

myS()=

{

B = getlocalbitprec();

real(sumnum(n0=0,my(n=bitprecision(n0,3*B/2));\

exp(2*(lngamma(n-1/2)-lngamma(n+1)))))/(4*Pi);

}

(we use 3B/2 as a rough guess of the accuracy that we need, if the result is
nonsense we can increase it.

Let us see how to do this in the Library. Here we have no additional
parameter, so E will only contain prec, and since E can be anything, let
us leave it as a long. But in the auxiliary program, we must increase the
accuracy of n0 by 50%, but only when n0 is not exact (i.e., a t INT or a
t FRAC). For this, we use the library function GEN precision(GEN z) which
returns the bitprecision of a real or inexact complex number z, and 0 if it
is an exact scalar. We first wite a small program which does this accuracy
increase if necessary, and then the auxiliary program:

static GEN

gprec_extend(GEN n)

{

long B = precision(n);

return B ? gprec_w(n, nbits2prec(3*B/2)) : n;

}

static GEN

47

_auxS(void *E, GEN n0)

{

pari_sp av = avma;

GEN n = gprec_extend(n0), S;

long prec = (long)E;

S = gsub(glngamma(gsub(n, ghalf), prec), glngamma(gaddgs(n, 1), prec));

return gc_upto(av, gexp(gmul2n(S, 1), prec));

}

The Library function gprec w (w is for word) changes the accuracy of a GEN,
and is roughly the equivalent of the GP function precision. Here we are
sure that when n is not exact its accuracy will increase, but in general there
is also the function gprec wensure which can increase but never decrease
the accuracy of its argument.

The calling program will then simply be:

GEN

mysum(long prec)

{

pari_sp av = avma;

GEN R = real_i(sumnum((void*)prec, _auxS, gen_0, NULL, prec));

return gc_upto(av, gdiv(R, Pi2n(2, prec)));

}

Note that sumnum may (and in this case does) return a t COMPLEX, so
we take the real part using real i since we know that the result is a real
number.

Note also that for this example the function sumnumonien (sumnummonien0
in the Library) works directly and much faster.

14 Closures

As you may know, closures exist in Pari, for instance under GP you can
write f = (x->sin(x^2+1)), and f will then be a closure, which can pri-
marily first be evaluated (such as f(Pi)), and second given as an argument
of another function since it is an ordinary Pari object, hence in the Library
as a GEN.

Let us take an example. I want to define a new summation func-
tion riemannsum which for a given function f and an integer N computes
(1/N)

∑
1≤n≤N f(n/N), which would be a rough Riemann sum approxima-

tion of
∫ 1
0 f(t) dt. I could write in GP:

riemannsum(F,N)=sum(n=1,N,f(n/N),0.)/N;

To program this in the Library we can write the following:

GEN

48

riemannsum(GEN F, long N, long prec)

{

pari_sp av = avma;

GEN S = real_0(prec);

long n;

for (n = 1; n <= N; n++)

S = gadd(S, closure_callgen1prec(F, sstoQ(n, N), prec));

return gc_upto(av, gdivgs(S, N));

}

The function closure callgen1prec assumes that F is a closure with
a single GEN argument and needing a prec argument to know the precision
with which it is going to do the computation (there of course exist more
general closure calls for more or less arguments and with or without prec).

Once installed in GP with install(riemannsum,GLp) it can be used.
But if I want to use it in the Library, I need an additional function. Assume
for instance that the function F is the function sin(ax), which would in GP

be written fun = ((a, x)->sin(a*x)); (of course fun(a, x)=sin(a*x)

would also work, but the previous notation emphasizes the fact that fun

will be used as a closure). We write the following:

GEN

fun(GEN x, GEN a, long prec)

{ return gsin(gmul(a, x), prec); }

GEN

riemanntest(GEN a, long N, long prec)

{

if (!a) a = mppi(prec);

return riemannsum(strtoclosure("fun", 1, a), N, prec);

}

Note: it is essential to put the auxiliary argument(s) (here a) after the main
variable(s) (here x), so it would be completely wrong to write GEN fun(GEN

a, GEN x, long prec) (note: maybe not in this very special case since
ax = xa, but you get my point!).

The function strtoclosure takes as first argument a string which is
the name of the function, as second argument a small integer which is the
number of auxiliary arguments needed by the function, followed by these
arguments in the same order. Here we have 1 auxiliary argument, a.

Note that even though fun is not supposed to be called from outside,
it must not be declared static, and must be declared somewhere, i.e., in
some header file (usually paripriv.h) if it is going to be permanently in
the library, or installed together with riemanntest if the latter is go-
ing to be used from GP. Here we added an extra quirk, we allow a to be

49

omitted, so that in GP the install commands would be install(fun,GGp);

install(riemanntest,DGLp); (where DG means that the first GEN argu-
ment can be omitted), so that you can write if you like riemanntest(,

100); (just for fun).
There exist other functions related to closures such as strtofunction in

case there is no auxiliary argument, and I refer you to the Library manual
for more explanations.

We are now going to combine the riemannsum program with limitnum

whose syntax is very similar to sumnum. For this, we note that for “nice”
functions F , the expression

∫ 1

0
f(x) dx− 1

N

f(0)

2
+

∑
1≤n≤N−1

f(n/N) +
f(1)

2


tends to 0 with an asymptotic expansion in even powers of 1/N , so that we
can use the function limitnum with parameter α = 2 (see the documentation
under GP to see the meaning of α).

We thus write the following:

static GEN

_auxriemann(void *E, GEN gN, long prec)

{

ulong N = itou(gN);

GEN F = (GEN)E;

GEN f0 = closure_callgen1prec(F, gen_0, prec);

GEN f1 = closure_callgen1prec(F, gen_1, prec);

GEN S = gdivgs(gsub(f0, f1), 2*N);

return gadd(S, riemannsum((GEN)E, N, prec));

}

GEN

intnumriemann(GEN F, long prec)

{ return limitnum((void*)F, _auxriemann, gen_2, prec); }

This program computes quite accurately the integral from 0 to 1 of nice
functions. As an exercise, you can modify all of the above so that it com-
putes the integral on any compact interval [a, b]. Of course, the intnumxxx

programs of Pari/GP are much more general and much more efficient, at
least once their initialization is done.

15 Parallelism

Thanks to Bill Allombert, one of the most powerful features of Pari/GP is
the possibility to use parallelism in an essentially trivial way. Let us see how

50

this is done in the Library. As a first simple example, we will again use the
search for Wolstenholme primes, which is typically something that one can
do in parallel.

Instead of the iterator forprime, we have a parallel iterator of course
named parforprime, but note that there is no specific ulong version. It is
used in essentially the same way as forprime itself, as follows:

void

pardowol(long lim)

{

pari_sp av = avma;

parforprime_t S;

GEN gpres;

GEN worker = strtoclosure("iswolstenfast", 0);

parforprime_init(&S, stoi(11), stoi(lim), worker);

while((gpres = parforprime_next(&S)))

/* gpres will contain [p,iswolstenfast(p)] as GENs */

if(!gequal0(gel(gpres, 2))) pari_printf("p = %Ps\n", gel(gpres, 1));

set_avma(av);

}

Several things to note about this example: first, we would have liked to
write directly iswolstenfast as the last argument of parforprime init.
Unfortunately, it requires a GEN and not a function. Thus we use the con-
struct strtoclosure followed by the name of the function as a string as
above, which does exactly what we want: it transforms a function into a
GEN of type t CLOSURE. Second, since we installed iswolstenfast with
the prototype lL, the closure knows that both the input and the output
are long (or equivalent such as ulong or int), and does the appropriate
conversions, both on input (transforming the prime, which is a GEN, into a
long using itos), and the output (transforming the int output into a GEN

using stoi or an equivalent).
Next, note that the 0 which follows the name means that iswolstenfast

does not need extra data (we will see a slightly more complicated example
below).

Finally, note that parforprime next returns a two component vector,
the first being the prime, and the second, the evaluation of the given function
at that prime, both given as GENs.

Exercise. Install the necessary functions in GP, and execute pardowol(20000)
which should take less than a second and give you the first Wolstenholme
prime, then pardowol(3*10^6) which will give you the only two known
such primes in 5 or 10 minutes depending on your processor and number of
threads (assuming of course that you have at least 8 threads, otherwise it
will be much longer).

51

But one can use parallelism more generally without using preinstalled
parallel iterators. In that case, the function which will be executed in parallel
will be called a worker, and we suggest to name all the auxiliary functions
used as workers myfunction worker, so as to make clear (with the initial
underscore) that it is an auxiliary function, and (with the ending worker)
that it will be used in some parallel program. A typical example is the use
of parsum, parallel summation, whose library prototype is GEN parsum(GEN

a, GEN b, GEN code). For instance, assume that we want to compute as
a real number Z(s,N) =

∑
1≤n≤N 1/ns for some complex number s, the

partial sum of the Riemann zeta function (this already exists in the library
as dirpowerssum, but we want to program it from scratch in a naive but
parallel way). In GP you can simply write sum(n=1,N,1/n^s,0.) (the 0.

at the end being necessary if s is an integer), which of course translates
trivially in C. But if N is really large, you want to do this in parallel. You
can write the following as a worker, which computes the summand:

GEN

_parsumpow_worker(GEN gn, GEN s, long prec)

{

return gpow(gn, gneg(s), prec);

}

In the above, the first argument gn (which must be a GEN, not a long) is go-
ing to range through the integers n as a t INT (in other words gn=utoi(n)).
Before writing the parallel program using this worker, a word about iden-
tifiers starting with an underscore. If you try to install the above function
in GP using install, even putting it between double quotes, you will get an
error message telling you that parsumpow worker is not a valid identifier.
You must thus give it in addition a valid GP name not beginning with an
underscore, for instance:

install("_parsumpow_worker",GGL,parsumpow_worker);

(of course you do not need all these complications if you do not give a name
beginning by an underscore).

You can now write the parallel summation using the function strtoclosure,
which transforms a C function given by its GP name (NOT it’s C name, see
above) as a string into a GEN of type t CLOSURE, which will be a closure in
Pari’s sense.

GEN

Z(GEN s, long N, long prec)

{

pari_sp av = avma;

GEN worker = strtoclosure("parsumpow_worker", 2, s, utoi(prec));

GEN S = parsum(gen_1, utoi(N), worker);

52

return gc_GEN(av, S);

}

The function strtoclosure is easy to use: as first argument you give the
worker function name as a string, as second argument the number of auxil-
iary arguments (do not count the summation index n or gn), here two, and
finally the list of arguments in the same order as they appear in the worker,
after the summation index.

Important note: you must declare the worker to be accessible from any
part of the Library. If it is going to be permanent, declare it in a header,
and not in paridecl.h where you declare all the functions which must be
known to GP, but in the file paripriv.h, which is more private. If it is not
going to be permanent and you want to use the function Z inside GP, you
must install it as explained above.

Technical remark: there is a more efficient way of creating the worker,
which essentially avoids unnecessary copies, which uses the snm closure

function together with is entry. I do not explain its use, but simply men-
tion that in the above program you can replace the line which creates the
worker by the following:

GEN worker = snm_closure(is_entry("_parsumpow_worker"),

mkvec2(s, utoi(prec)));

In practice it makes essentially no difference, so for simplicity I suggest only
using strtoclosure.

You may have noticed that there is a slight omission in the above pro-
gram: we want to initialize the sum to 0. and not to 0 so as to avoid com-
puting with rational numbers with huge denominators, and parsum does not
allow this. A simple possibility is to modify the worker as follows:

GEN

_parsumpow_worker(GEN gn, GEN s, long prec)

{ return gequal1(gn) ? real_1(prec) : gpow(gn, gneg(s), prec); }

53

