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Introduction I

Number fields will always be considered up to isomorphism.
Dirichlet series associated to number fields of given degree n :

Φn(s) =
∑

[K :Q]=n

|disc(K )|−s .

Knowing Φn explicitly is equivalent to knowing how many K for each
discriminant. One usually imposes additional conditions : for instance
Φn(G; s) : Galois group of the Galois closure isomorphic to G, or
Φn(k ; s) : quadratic resolvent field of cubic field, or cubic resolvent
field of quartic field isomorphic to k .
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Introduction II

Theorem (Mäki et al)
If G is an abelian group then Φn(G; s) is an explicitly determinable
finite linear combination of (infinite) Euler products.
Examples :

Φ2(C2; s) = −1 +

(
1 +

1
22s +

2
23s

)∏
p 6=2

(
1 +

1
ps

)
,

Φ3(C3; s) = −1
2

+
1
2

(
1 +

2
34s

) ∏
p≡1 (mod 6)

(
1 +

2
p2s

)
.

If G is not abelian, conjecturally not possible.
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Introduction III

Instead of fixing the Galois group, in small degree we can fix the
resolvent field :

• If K is a noncyclic cubic field, its Galois closure contains a
unique quadratic field k = Q(

√
D), the quadratic resolvent. We

may want to consider Φ3(k ; s), where k (or D) is fixed.
• If K is a quartic field with A4 or S4 Galois group of Galois

closure, the latter contains a cubic field k , unique in the A4 case
and unique up to conjugation in the S4 case, the cubic resolvent.
We may want to consider Φ4(k ; s), where k is fixed.

Theorem

• (Morra, C.) Φ3(k ; s) is a finite linear combination of explicit Euler
products.

• (Diaz y Diaz, Olivier, C.) Φ4(k ; s) is a finite linear combination of
explicit Euler products.
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Introduction IV

Unfortunately, in both theorems “explicit” is not very nice : they both
involve sums over characters of certain twisted ray class groups, not
easy to determine except in special cases.

In fact, case in point : our knowledge of the size of say 3-part of class
groups is very poor : smaller than the whole of course, but even
gaining a small exponent is hard (Ellenberg–Venkatesh). For
instance, conjecturally the number of cubic fields of given
discriminant d should be dε for any ε > 0, but the best known result
due to EV is d1/3+ε.

We do not improve on this, but give instead nice explicit formulas for
Φ3(k ; s) and Φ4(k ; s). Note that in both cases we have
disc(K ) = disc(k)f (K )2 for some f (K ) ∈ Z≥1. Thus for n = 3, 4 we
set :

Φn(k ; s) = 1/|Aut(k)|+
∑

K

f (K )−s ,

|Aut(k)| number of Galois automorphism of k .
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The Cubic Case I

Note : D always a fundamental discriminant (including 1, special case
of cyclic cubic fields).
To give the result in the cubic case, need to define :
• D∗ discriminant of mirror field of k = Q(

√
D), i.e., D∗ = −3D if

3 - D, D∗ = −D/3 if 3 | D.
• LN : cubic fields of discriminant N (only used for N = D∗ and

N = −27D).
• L(D) = LD∗ ∪ L−27D.
• If E is a cubic field and p a prime number,

ωE (p) =


−1 if p is inert in E ,
2 if p is totally split in E ,
0 otherwise.
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The Cubic Case II

Theorem (Thorne, C.)
We have

cDΦ3(D; s) =
1
2

M1(s)
∏

(−3D
p )=1

(
1 +

2
ps

)
+
∑

E∈L(D)

M2,E (s)
∏

(−3D
p )=1

(
1 +

ωE (p)

ps

)
,

where cD = 1 if D = 1 or D < −3, cD = 3 if D = −3 or D > 1, and the
3-Euler factors M1(s) and M2,E (s) are given in the following table.

Condition on D M1(s) M2,E (s), E ∈ LD∗ M2,E (s), E ∈ L−27D

3 - D 1 + 2/32s 1 + 2/32s 1− 1/32s

D ≡ 3 (mod 9) 1 + 2/3s 1 + 2/3s 1− 1/3s

D ≡ 6 (mod 9) 1 + 2/3s + 6/32s 1 + 2/3s + 3ωE (3)/32s 1− 1/3s
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The Cubic Case III

Examples :

Φ3(−4; s) =
1
2

(
1 +

2
32s

) ∏
(12

p )=1

(
1 +

2
ps

)
.

Here L(D) = ∅.

Φ3(−255; s) =
1
2

(
1 +

2
3s +

6
32s

) ∏
(6885

p )=1

(
1 +

2
ps

)

+

(
1− 1

3s

)∏
p

(
1 +

ωE (p)

ps

)
,

where E is the cubic field determined by x3 − 12x − 1 = 0.

In words, the splitting of primes in the single cubic field E determines
all cubic fields with quadratic resolvent Q(

√
−255) (“One field to rule

them all”).
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The Cubic Case : Comments I

To estimate the number of cubic fields of given discriminant Dn2, it is
in particular necessary to estimate the number of auxiliary fields E
which occur, i.e., the cardinality of L(D). This is given as follows :

Theorem (Nakagawa, Ono, Thorne)
Denote by rk3(D) the 3-rank of the class group of k = Q(

√
D). We

have

|L(D)| =

{
(3rk3(D) − 1)/2 if D < 0 ,
(3rk3(D)+1 − 1)/2 if D > 0 .

As mentioned, the problem is that we have only very weak upper
bounds for 3rk3(D) (in O(|D|1/3+ε)), although should be O(|D|ε).
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The Cubic Case : Comments II

Computing the number N3(k ; X ) of cubic fields having a given
quadratic resolvent k = Q(

√
D) and absolute discriminant up to X

can be done very fast using the theorem and standard techniques of
analytic number theory (X = 1025 is feasible). We can also sum on D
and compute the total number N3(X ) of cubic fields, although this is
less efficient than the method of K. Belabas.

It is tempting to try to prove the known result that N3(X ) ∼ c · X for a
known constant c (essentially c = 1/ζ(3)). It is probably possible to
do this, or at least to obtain N3(X ) = O(X 1+ε), but since this has
been proved (rather easily in fact) by other methods, it seems to be
unnecessary work.
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The Cubic Case : Indication of Proof I

This is essentially in Anna Morra’s thesis. We may assume
D 6= 1,−3, easier and known.
K cubic field with resolvent k = Q(

√
D), i.e., discriminant Dn2. Let N

be the Galois closure of K . L = Q(
√

D,
√
−3), τ1, τ2 generators of

Gal(L/Q) ' C2 × C2.

Kummer theory : N(
√
−3) = L( 3

√
α) for some α ∈ L∗, unique modulo

cubes up to changing α into its inverse, such that ατi(α) is a cube for
i = 1, 2 ; we write α ∈ (L∗/L∗3)[T ] with T = {τ1 + 1, τ2 + 1}.

Writing αZL = a0a
2
1q

3, immediate consequence : bijection between
cubic fields K with given k and triples (a0, a1,u), where a0, a1

coprime squarefree ideals, a0a
2
1 ∈ Cl(L)3, a0a

2
1 ∈ (I/I3)[T ],

u ∈ (L∗/L∗3)[T ] such that uZL = q3, some q (we write u ∈ S3(L)[T ],
the 3-Selmer group of L).
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The Cubic Case : Indication of Proof II

Then need to compute disc(K ) in terms of (a0, a1,u) :

Theorem

1 There exists an ideal aα of k = Q(
√

D) such that a0a1 = aαZL.
2 We have disc(K ) = Df (K )2, where f (K ) is equal to aα times a

complicated but explicit 3-adic factor.

The 3-adic factor is computed thanks to an important theorem of
Hecke which complements Kummer theory, which involves the
solubility of the congruence x3 ≡ α (mod ∗pk ) for prime ideals p of L
above 3. This leads to the introduction of
B = {(1), (

√
−3), (3), (3

√
−3)}.

The condition a0a
2
1 ∈ Cl(L)3 is detected by summing over characters

χ of Cl(L)/Cl(L)3, and together with the 3-adic complications, we in
fact sum over characters of the 3-group Gb = Clb(L)/Clb(L)3 with
b ∈ B.
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The Cubic Case : Indication of Proof III

Using complicated but straightforward combinatorial arguments and
some local and global class field theory, we are led to a formula (in
C.-Morra and in Morra’s thesis), which in our special case where the
base field is Q simplifies to an expression of the type :

Φ3(D; s) =
3

2cD

∑
b∈B

Ab(s)
∑
χ∈Ĝb

ωχ(3)F (b, χ, s) ,

with Ab(s) constant multiples of a single Euler factor at 3, ωχ depends
on the character χ but takes only the values 0, ±1, and 2, and

F (b, χ, s) =
∏

(−3D
p )=1

(
1 +

ωχ(p)

ps

)
.
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The Cubic Case : Explicit Formula

This proves the claim that we have an “explicit” finite linear
combination of Euler products. Want to make it completely explicit
(characters of Gb not very nice). The basic result is :

Theorem (Thorne)
There exists a bijection between pairs of conjugate nontrivial
characters (χ, χ) of Gb and the following sets of cubic fields :
• If b = (1) or (

√
−3), or b = (3) and 3 | D, the bijection is with LD∗ .

• If b = (3) and 3 - D or b = (3
√
−3), the bijection is with

L = LD∗ ∪ L−27D.
In addition, under this bijection, if E is the field associated to (χ, χ)
we have ωχ(p) = ωE (p).
This theorem combined with some further computations prove our
main theorem in the cubic case.
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The Quartic A4 and S4-Case : Introduction I

Let K be a quartic field, K̃ its Galois closure, assume Gal(K̃/Q) ' A4

or S4. There exists a cubic subfield k of K̃ , unique up to conjugation,
the resolvent cubic. In the same way, we want to compute explicitly
Φ4(k ; s) (if Gal(K̃/Q) not A4 or S4, different and simpler). Here
Kummer theory much simpler since no roots of unity to adjoin.

But S4 more complicated group : we will need to distinguish between
a great number of possible splittings of the prime 2 (more than 20).
We first give the result, and then an indication of the (much more
complicated) proof. Very similar to the cubic case : Need to define
ωE (p), and a set L(k) of quartic fields, but also sk (p) for a cubic field
k .
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The Quartic A4 and S4-Case : Notation

Let p be a prime number.
• If k is a cubic field, we set

sk (p) =


1 if p is (21) or (121) in k ,
3 if p is (111) in k ,
0 otherwise.

• If E is a quartic field, we set

ωE (p) =


−1 if p is (4), (22), (212) in E
1 if p is (211), (1211) in E
3 if p is (1111) in E
0 otherwise.

(Splitting notation self-explanatory.)
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The Quartic A4 and S4-Case : The Theorem I

Let k be a cubic field.
• Lk ,n2 : quartic fields with cubic resolvent k and discriminant

n2 disc(k), in addition totally real if k is totally real.
• L(k) = Lk ,1 ∪ Lk ,4 ∪ Lk ,16 ∪ Lk ,64,tr , where the index tr means

that 2 must be totally ramified.

Theorem (Thorne, C.)
Let k be a cubic field, r2(k) number of complex places,
a(k) = |Aut(k)| (3 for k cyclic, 1 otherwise). We have

2r2(k)Φ4(k ; s) =
1

a(k)
M1(s)

∏
p 6=2

(
1 +

sk (p)

ps

)

+
∑

E∈L(k)

M2,E (s)
∏
p 6=2

(
1 +

ωE (p)

ps

)
,
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The Quartic A4 and S4-Case : The Theorem II

where M1(s) and M2,E (s) are Euler factors at 2 which are
polynomials of degree less than or equal to 4 in 1/2s : 6 splitting
types for M1(s), and 23 types for M2,E (s) :

k -split M1(s) 8M1(1)

(3) 1 + 3/23s 11
(21) 1 + 1/22s + 4/23s + 2/24s 15

(111) 1 + 3/22s + 6/23s + 6/24s 23
(121)0 1 + 1/2s + 2/23s + 4/24s 16
(121)4 1 + 1/2s + 2/22s + 4/24s 18

(13) 1 + 1/2s + 2/23s 14

(Index 0 or 4 indicates discriminant modulo 8).
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The Quartic A4 and S4-Case : The Theorem III

k -split E-split n2 M2,E (s), E ∈ Lk,n2 k -split E-split n2 M2,E (s), E ∈ Lk,n2

(3) (31) 1 1 + 3/23s (121)0 (212) 1 1 + 1/2s + 2/23s − 4/24s

(3) (14) 64 1− 1/23s (121)0 (1211) 1 1 + 1/2s + 2/23s + 4/24s

(21) (4) 1 1 + 1/22s − 2/24s (121)0 (1212) 4 1 + 1/2s − 2/23s

(21) (211) 1 1 + 1/22s + 4/23s + 2/24s (121)0 (14) 64 1− 1/2s

(21) (22) 16 1 + 1/22s − 4/23s + 2/24s (121)4 (212) 1 1 + 1/2s + 2/22s − 4/24s

(21) (1212) 16 1 + 1/22s − 2/24s (121)4 (1211) 1 1 + 1/2s + 2/22s + 4/24s

(21) (14) 64 1− 1/22s (121)4 (22) 4 1 + 1/2s − 2/22s

(111) (22) 1 1 + 3/22s − 2/23s − 2/24s (121)4 (22) 16 1− 1/2s

(111) (22) 16 1− 1/22s − 2/23s + 2/24s (121)4 (1212) 16 1− 1/2s

(111) (1111) 1 1 + 3/22s + 6/23s + 6/24s (13) (131) 1 1 + 1/2s + 2/23s

(111) (1212) 16 1− 1/22s + 2/23s − 2/24s (13) (14) 4 1 + 1/2s − 2/23s

(13) (14) 64 1− 1/2s
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The Quartic A4 Case : Example

We give three examples : one in the much simpler A4 case, two in the
S4 case.
Let k be the cyclic cubic field of discriminant 49 defined by
x3 − x2 − 2x + 1 = 0. We have

Φ4(k ; s) =
1
3

(
1 +

3
23s

) ∏
p≡±1 (mod 14)

(
1 +

3
ps

)

Note that since we are in an abelian situation, the splitting of p is
equivalent to congruences.
Thus

Φ4(k ; s) =
1
3

+
1
8s +

1
13s +

1
29s +

1
41s +

1
43s +

1
71s +

1
83s +

1
97s +

3
104s +· · · ,

where a/f s means that there are a quartic A4-fields of discriminant
49 · f 2.
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The Quartic S4 Case : Examples

• Let k be the noncyclic totally real cubic of discriminant 148
defined by x3 − x2 − 3x + 1 = 0. Then

Φ4(k ; s) =

(
1 +

1
2s +

2
23s

)∏
p 6=2

(
1 +

sk (p)

ps

)
.

• Let k be the noncyclic totally real cubic of discriminant 229
defined by x3 − 4x − 1 = 0. Then

Φ4(k ; s) =

(
1 +

1
22s +

4
23s +

2
24s

)∏
p 6=2

(
1 +

sk (p)

ps

)

+

(
1− 1

22s

)∏
p

(
1 +

ωE (p)

ps

)
,

where E is the S4-quartic field of discriminant 64 · 229 defined by
x4 − 2x3 − 4x2 + 4x + 2 = 0.
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The Quartic A4 and S4 Cases : Comments

Comments essentially identical to the cubic case : the number of
necessary auxiliary quartic fields |L(k)| is equal to

2rk2(Cl4(k)) − 1 ,

where rk2 is the 2-rank and Cl4(k) the ray class group of conductor 4.
We do not know how to control this well.
In fact, it is widely conjectured that N4(A4; X ) ∼ c · X 1/2 log X , but the
above does not allow to obtain any nontrivial result (best known,
using in fact elementary methods, is O(X 3/4+ε)).
On the other hand computing the number N4(k ; X ) of quartic fields
having a given cubic resolvent k and absolute discriminant up to X
can again be done very fast using the theorem and standard
techniques of analytic number theory.
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The Quartic A4 and S4 Case : Indication of Proof I

The techniques are similar to the cubic case (without the
complication of adjoining cube roots of unity), but we need to work
much more for essentially two reasons.

• First, we must make a precise list of all possible splittings in an
S4-quartic extension : apparently not in the literature. Done partly
in the 1970’s by J. Martinet and A. Jehanne, but incomplete (they
could have completed it but did not really need it).

• Second, we need to compute precisely some subtle arithmetic
quantities, and this is done using techniques of global, but mainly
local class field theory. This was done around 2000 by F. Diaz y
Diaz, M. Olivier, and C.

• We must then study in detail the set of quartic fields L(k) (this
was not necessary in the cubic case), and relate some twisted
ray class groups to more common objects.
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The Quartic A4 and S4 Case : Indication of Proof II

The main theorem of [CDO] is as follows :

Theorem (Diaz y Diaz, Olivier, C.)
Let k be a cubic field. We have

Φ4(k ; s) =
22−r2(k)

a(k)23s

∑
c|2Zk

zk (c)(N c)s−1
∏
p|c

(
1− 1
Nps

) ∑
χ∈Ĝ

c2

Fk (χ, s) ,

Fk (χ, s) =
∏

p

(
1 +

sχ(p)

ps

)
, sχ(p) =

∑
a|pZk squarefree
Na square

χ(a) ,

zk (c) = 1 or 2 depending on c and the splitting of 2 in k, and Gc2 is
essentially (but not exactly) Clc2(k)/Clc2(k)2 (recall that
a(k) = |Aut(k)|).
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The Quartic A4 and S4 Case : Indication of Proof III

For exposition, we treat S4. Classical result (Hasse ?) :

Theorem
There is a bijection between S4-quartic fields K with cubic resolvent k
and quadratic extensions K6/k of trivial norm, i.e., K6 = k(

√
α) with

Nk/Q(α) a square, so in particular N(d(K6/k)) is a square.
In fact K6 is the unique extension of k in K̃ such that Gal(K̃/K6) ' C4.
In addition ζK (s) = ζ(s)ζK6(s)/ζk (s) and
disc(K ) = disc(k)N(d(K6/k)).
Finally, if K6 = k(

√
α) of trivial norm and x3 + a2x2 + a1x + a0 is the

characteristic polynomial of α, a defining polynomial for K is
x4 + 2a2x2 − 8

√
−a0x + a2

2 − 4a1.
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The Quartic A4 and S4 Case : Indication of Proof IV

Proposition
There is a one-to-one correspondence between on the one hand
quadratic extensions of k of trivial norm, together with the trivial
extension k/k, and on the other hand pairs (a,u), where a is an
integral, squarefree ideal of k of square norm whose class modulo
principal ideals is a square in the class group of k, and u ∈ S[N],
where

S(N) = {u, uZk = q2, N(u) square} .

Using the same theorem of Hecke as in the cubic case, introducing
suitable twisted ray class groups and ray Selmer groups, and doing
some combinatorial work, we obtain essentially the CDO theorem,
where zk (c) is given as the index of a twisted ray class group in
another.



26

The Quartic A4 and S4 Case : Indication of Proof IV

Proposition
There is a one-to-one correspondence between on the one hand
quadratic extensions of k of trivial norm, together with the trivial
extension k/k, and on the other hand pairs (a,u), where a is an
integral, squarefree ideal of k of square norm whose class modulo
principal ideals is a square in the class group of k, and u ∈ S[N],
where

S(N) = {u, uZk = q2, N(u) square} .

Using the same theorem of Hecke as in the cubic case, introducing
suitable twisted ray class groups and ray Selmer groups, and doing
some combinatorial work, we obtain essentially the CDO theorem,
where zk (c) is given as the index of a twisted ray class group in
another.



27

The Quartic A4 and S4 Case : Indication of Proof V

Using a number of exact sequences, we can then show that zk (c) is
the index of (Zk/c

2)∗[N] in (Zk/c
2)∗, where [N] means the subgroup

of elements having a lift of square norm.
This is “elementary” : no more class groups, unit groups, or Selmer
groups. However difficult to compute ; we have done it only when k is
a cubic field. It uses local class field theory and some rather
surprising algebraic arguments.
Challenge : prove without using CFT the following

Proposition
Let k be a cubic field and p an unramified prime ideal dividing 2. Then
if c = 2Zk/p we have zk (c) = 1, in other words any element of
(Zk/c

2)∗ has a lift of square norm.
We would be interested to know such a proof. Putting everything
together proves the CDO theorem.
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The Quartic A4 and S4 Case : Indication of Proof VI

We are now in the same situation as in the cubic case after
A. Morra’s thesis : the Dirichlet series Φ4(k ; s) is an explicit finite
linear combination of Euler products. However these involve
characters over rather complicated class groups, so not sufficiently
explicit to allow algorithmic computation. We will do the same as for
the cubic case, make it completely explicit and algorithmic.
We essentially need to do four things :
• Compute and/or interpret the twisted class groups Gc2 in terms

of more standard types of class groups.
• Determine all possible splitting types of primes in the fields

(k ,K6,K ).
• Study the fields in L(k).
• Interpret the sums over characters of Gc2 as sums over quartic

fields E ∈ L(k).
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The Quartic A4 and S4 Case : Indication of Proof VII

• Twisted class groups Gc2 : needs to be studied in detail (1 page),
uses global CFT but not difficult. This study has a surprising
corollary :

Proposition
Let k be a cubic field. There exists u ∈ k∗ coprime to 2 such that
uZk = q2, N(u) is a square, and u 6≡ 1 (mod 4Zk ).
I do not know how to prove this without CFT.

• Splitting of primes in (k ,K6,K ). As mentioned, this was partly done
by Martinet and Jehanne, but need to do it completely. Two steps :
first prove that certain splittings are impossible, second for the
remaining ones find examples. For fun, here is the table of
impossibilities :
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The Quartic A4 and S4 Case : Prime Splits I

k -split K6-split K -split Possible for p 6= 2 ? Possible for p = 2 ?
(3) (6) — ZETA ZETA
(3) (33) (31) OK OK
(3) (32) (14) SQN OK

(21) (42) (4) OK OK
(21) (411) — ZETA ZETA
(21) (412) — ZETA ZETA
(21) (222) (22) STICK STICK
(21) (2211) (211) OK OK
(21) (2212) (212) SQN GRP(1)
(21) (222) (22) OK OK
(21) (2211) (131) RAM RAM
(21) (2211) (1212) OK OK
(21) (2212) (14) SQN OK
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The Quartic A4 and S4 Case : Prime Splits II

k -split K6-split K -split Possible for p 6= 2 ? Possible for p = 2 ?
(111) (222) — ZETA ZETA
(111) (2211) (22) OK OK
(111) (2212) — ZETA ZETA
(111) (21111) (211) STICK STICK
(111) (21112) (212) SQN GRP(2)
(111) (21212) (22) OK OK
(111) (111111) (1111) OK OK
(111) (121111) (1211) SQN GRP(3)
(111) (121211) (1212) OK OK
(111) (121211) (131) RAM RAM
(111) (121212) (14) SQN OK
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The Quartic A4 and S4 Case : Prime Splits III

k -split K6-split K -split Possible for p 6= 2 ? Possible for p = 2 ?
(121) (222) — ZETA ZETA
(121) (2211) (212) OK OK
(121) (2212) (22) SQN GRP(4)
(121) (12122) (212) GRP(5) GRP(5)
(121) (121211) (1211) OK OK
(121) (121212) (1212) SQN GRP(6)
(121)0 (142) (22) SQN PARITY
(121)4 (142) (22) SQN OK
(121) (1411) (1212) SQN OK
(121) (1412) (14) OK OK
(13) (23) (22) GRP(7) GRP(7)
(13) (1313) (1212) GRP(8) GRP(8)
(13) (1313) (131) OK OK
(13) (16) (14) SQN OK
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The Quartic A4 and S4 Case : Prime Splits IV and L(k) I

In these tables, anything other than OK means the splitting is
impossible, for quite a number of reasons : ZETA because of the zeta
relation, SQN because of the square norm condition, STICK because
of Stickelberger’s theorem, RAM because of ramification indices, and
more generally GRP(i) because of case-by-case reasoning on
decomposition and inertia groups. The whole study with proof
requires 6 tedious pages.

• Study of L(k) : recall that

L(k) = Lk ,1 ∪ Lk ,4 ∪ Lk ,16 ∪ Lk ,64,tr .

The reason for the importance of this set is :

Proposition
E ∈ L(k) if and only if the corresponding K6 of trivial norm is of the
form K6 = k(

√
α) with α coprime to 2, totally positive, and αZk = q2

(i.e., α virtual unit).
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The Quartic A4 and S4 Case : L(k) II

Proposition

• |L(k)| = 2rk2(Cl4(k)) − 1.
• |Lk ,1| = (2rk2(Cl(k)) − 1)/a(k).
• Lk ,4 = Lk ,16 = Lk ,64,tr = ∅ (equivalently L(k) = Lk ,1) if and only

if k is totally real and all totally positive units are squares.
• If one of Lk ,4, Lk ,16, Lk ,64,tr is nonempty the other two are empty.

It is then possible to give in terms of the splitting of 2 in k and the
existence or nonexistence of certain virtual units, necessary and
sufficient conditions for Lk ,4, Lk ,16, or Lk ,64,tr to be nonempty. The
complete study of these sets require in all an additional 6 pages.
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The Quartic A4 and S4 Case : L(k) II
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The Quartic A4 and S4 Case : Sums over Characters

• The final thing that we need to do is to show that the sums over
characters of Gc2 as which occur in the CDO theorem correspond to
sums over quartic fields E ∈ L(k). Even though this is analogous to
the cubic case, it is much more subtle, and again involves some local
and global class field theory and 4 additional pages.
Once this is done, the usual combinatorics done in the cubic case
lead to our main theorem.
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Signatures or Local Conditions I

We may require that our fields K , in addition to having k as cubic
resolvent, satisfies a finite number of local conditions (for instance
splittings of certain primes, etc...). One of the most natural
generalizations of our work, already mentioned in [CDO] is to add
signature conditions : if k is a cubic field of signature (1,1) then K
has necessarily signature (2,1). But if k is totally real then K is either
totally real or totally complex, and we may want to compute explicitly
the corresponding Dirichlet series Φ+

4 (k ; s), where we restrict the
sum to totally real K .

The CDO theorem is valid almost verbatim :
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Signatures II

Theorem

Φ+
4 (k ; s) =

1
a(k)23s

∑
c|2Zk

zk (c)(N c)s−1
∏
p|c

(
1− 1
Nps

) ∑
χ∈Ĝ+

c2

Fk (χ, s) ,

with the same definition of zk (c) and Fk (χ, s), and G+
c2 is a “narrow”

twisted ray class group.
Thus the only difference with the CDO theorem is the replacement of
Gc2 by G+

c2 , and the coefficient in front equal to 1 instead of
22−r2(k) = 4 since k is totally real.

As a consequence (already noted in CDO) it is a theorem that
asymptotically the proportion of totally real K with given cubic
resolvent k among all of them is 1/4 : in fact we can prove that the
convergence is quite fast (at least O(X−1/2), but in practice
O(X−3/4+ε)).
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Signatures III

We then transform the CDO+ theorem into a theorem of the same
nature as the main theorem without signatures : the only changes
are : first, an additional factor of 1/4, and second and more
importantly, the set L(k) is changed into a new set L∗(k), where we
simply remove the condition that E be totally real when k is totally
real. We give one example in the A4 case and one in the S4 case.

Example for A4 : Let again k be the cyclic cubic field of discriminant
49. Then

Φ+
4 (k ; s) =

1
4

Φ4(k ; s) +

(
1− 1

23s

) ∏
pZk=p1p2p3

(
1 +

ωE (p)

ps

) ,

where E is the totally complex A4-quartic field of discriminant 64 · 49
with cubic resolvent k defined by x4 − 2x3 + 2x2 + 2 = 0.



38

Signatures III

We then transform the CDO+ theorem into a theorem of the same
nature as the main theorem without signatures : the only changes
are : first, an additional factor of 1/4, and second and more
importantly, the set L(k) is changed into a new set L∗(k), where we
simply remove the condition that E be totally real when k is totally
real. We give one example in the A4 case and one in the S4 case.

Example for A4 : Let again k be the cyclic cubic field of discriminant
49. Then

Φ+
4 (k ; s) =

1
4

Φ4(k ; s) +

(
1− 1

23s

) ∏
pZk=p1p2p3

(
1 +

ωE (p)

ps

) ,

where E is the totally complex A4-quartic field of discriminant 64 · 49
with cubic resolvent k defined by x4 − 2x3 + 2x2 + 2 = 0.
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Signatures IV

Example for S4 : Let k be the noncyclic totally real cubic field of
discriminant 229 defined by x3 − 4x − 1 = 0. Then

Φ+
4 (k ; s) =

1
4

Φ4(k ; s) +

(
1 +

1
22s −

2
24s

)∏
p 6=2

(
1 +

ωE1(p)

ps

)

+

(
1− 1

22s

)∏
p 6=2

(
1 +

ωE64(p)

ps

) ,

where E1 is the unique totally complex quartic field of discriminant
229 and cubic resolvent k defined by x4 − x + 1 = 0 and E64 is the
unique totally complex quartic field of discriminant 64 · 229 and cubic
resolvent k in which 2 is totally ramified, defined by
x4 − 2x3 + 4x2 − 2x + 5.


