Prime degree isogenies of elliptic curves over number fields

Nicolas Billerey

Université Clermont Auvergne
Laboratoire de mathématiques Blaise Pascal

8th atelier PARI/GP
Clermont-Ferrand, June 20, 2017
$\overline{\mathbf{Q}}$ algebraic closure of \mathbf{Q};
$K \subset \overline{\mathbf{Q}}$ number field;
$d=[K: \mathbf{Q}]$;
$\Delta_{K}=\operatorname{Disc}(K)$;
\mathcal{O}_{K} integer ring of K;
E / K elliptic curve;
$\operatorname{End}_{K}(E)$ ring of K-endomorphisms of E.
$\overline{\mathbf{Q}}$ algebraic closure of \mathbf{Q};
$K \subset \overline{\mathbf{Q}}$ number field;
$d=[K: \mathbf{Q}]$;
$\Delta_{K}=\operatorname{Disc}(K)$;
\mathcal{O}_{K} integer ring of K;
E / K elliptic curve;
$\operatorname{End}_{K}(E)$ ring of K-endomorphisms of E.
For every prime number p, write

$$
\rho_{E, p}: \operatorname{Gal}(\overline{\mathbf{Q}} / K) \longrightarrow \operatorname{Aut}(E[p])
$$

the representation giving the action of $\operatorname{Gal}(\overline{\mathbf{Q}} / K)$ on $E[p]$.

The following are equivalent :
(i) The representation $\rho_{E, p}$ is reducible;
(ii) There exist an elliptic curve E^{\prime} / K and $\varphi: E \rightarrow E^{\prime}$ a K-isogeny of degree p.

The following are equivalent :
(i) The representation $\rho_{E, p}$ is reducible;
(ii) There exist an elliptic curve E^{\prime} / K and $\varphi: E \rightarrow E^{\prime}$ a K-isogeny of degree p.

$$
\operatorname{Red}(E / K) \stackrel{\text { def }}{=}\{p \text { prime satisfying }(\mathrm{i}) \text { and (ii) }\}
$$

Goal

We have

$$
|\operatorname{Red}(E / K)|<+\infty \Longleftrightarrow \operatorname{End}_{K}(E)=\mathbf{Z}
$$

We have

$$
|\operatorname{Red}(E / K)|<+\infty \Longleftrightarrow \operatorname{End}_{K}(E)=\mathbf{Z}
$$

Main goal : When $\operatorname{End}_{K}(E)=\mathbf{Z}$, explicitly compute the (finite) set $\operatorname{Red}(E / K)$ from a given Weierstrass equation of E.

We have

$$
|\operatorname{Red}(E / K)|<+\infty \Longleftrightarrow \operatorname{End}_{K}(E)=\mathbf{Z}
$$

Main goal : When $\operatorname{End}_{K}(E)=\mathbf{Z}$, explicitly compute the (finite) set $\operatorname{Red}(E / K)$ from a given Weierstrass equation of E.

Remarks.

Goal

We have

$$
|\operatorname{Red}(E / K)|<+\infty \Longleftrightarrow \operatorname{End}_{K}(E)=\mathbf{Z}
$$

Main goal : When $\operatorname{End}_{K}(E)=\mathbf{Z}$, explicitly compute the (finite) set $\operatorname{Red}(E / K)$ from a given Weierstrass equation of E.

Remarks.
(1) Mazur $(K=\mathbf{Q})$:

$$
\operatorname{Red}(E / \mathbf{Q}) \subset\{2,3,5,7,11,13,17,19,37,43,67,163\}
$$

Goal

We have

$$
|\operatorname{Red}(E / K)|<+\infty \Longleftrightarrow \operatorname{End}_{K}(E)=\mathbf{Z}
$$

Main goal : When $\operatorname{End}_{K}(E)=\mathbf{Z}$, explicitly compute the (finite) set $\operatorname{Red}(E / K)$ from a given Weierstrass equation of E.

Remarks.
(1) Mazur $(K=\mathbf{Q})$:

$$
\operatorname{Red}(E / \mathbf{Q}) \subset\{2,3,5,7,11,13,17,19,37,43,67,163\}
$$

(2) No known generalization of Mazur's result to degree $d>1$.

Goal

We have

$$
|\operatorname{Red}(E / K)|<+\infty \Longleftrightarrow \operatorname{End}_{K}(E)=\mathbf{Z}
$$

Main goal : When $\operatorname{End}_{K}(E)=\mathbf{Z}$, explicitly compute the (finite) set $\operatorname{Red}(E / K)$ from a given Weierstrass equation of E.

Remarks.
(1) Mazur $(K=\mathbf{Q})$:

$$
\operatorname{Red}(E / \mathbf{Q}) \subset\{2,3,5,7,11,13,17,19,37,43,67,163\}
$$

(2) No known generalization of Mazur's result to degree $d>1$.
(3) Effective results (depending on E) of Gaudron-Rémond. Useful in practice?

Useful background on elliptic curves

If E has good reduction at a prime ideal \mathfrak{q}, put:

Useful background on elliptic curves

If E has good reduction at a prime ideal \mathfrak{q}, put:
$\boldsymbol{F}_{\mathfrak{q}}=\mathcal{O}_{K} / \mathfrak{q}$ residual field;
$\tilde{E} / \mathbf{F}_{\mathfrak{q}}$ reduction of E modulo \mathfrak{q};
$\mathrm{N}(\mathfrak{q})=\left|\mathbf{F}_{\mathfrak{q}}\right|$ norm of \mathfrak{q}.

Useful background on elliptic curves

If E has good reduction at a prime ideal \mathfrak{q}, put:
$F_{\mathfrak{q}}=\mathcal{O}_{K} / \mathfrak{q}$ residual field ;
$\tilde{E} / \mathbf{F}_{\mathfrak{q}}$ reduction of E modulo \mathfrak{q};

$$
N(\mathfrak{q})=\left|\mathbf{F}_{\mathfrak{q}}\right| \text { norm of } \mathfrak{q} .
$$

Define

$$
a_{\mathfrak{q}}=\mathrm{N}(\mathfrak{q})+1-\left|\widetilde{E}\left(\mathbf{F}_{\mathfrak{q}}\right)\right| \quad \text { and } \quad P_{\mathfrak{q}}(X)=X^{2}-a_{\mathfrak{q}} X+\mathrm{N}(\mathfrak{q}) .
$$

Useful background on elliptic curves

If E has good reduction at a prime ideal \mathfrak{q}, put:

$$
\boldsymbol{F}_{\mathfrak{q}}=\mathcal{O}_{K} / \mathfrak{q} \text { residual field } ;
$$

$\tilde{E} / \mathbf{F}_{\mathfrak{q}}$ reduction of E modulo \mathfrak{q};

$$
N(\mathfrak{q})=\left|\mathbf{F}_{\mathfrak{q}}\right| \text { norm of } \mathfrak{q} .
$$

Define

$$
a_{\mathfrak{q}}=\mathrm{N}(\mathfrak{q})+1-\left|\widetilde{E}\left(\mathbf{F}_{\mathfrak{q}}\right)\right| \quad \text { and } \quad P_{\mathfrak{q}}(X)=X^{2}-a_{\mathfrak{q}} X+\mathrm{N}(\mathfrak{q}) .
$$

Hasse: $\left|a_{\mathfrak{q}}\right| \leq 2 \sqrt{\mathrm{~N}(\mathfrak{q})}$

Useful background on elliptic curves

If E has good reduction at a prime ideal \mathfrak{q}, put:

$$
\mathbf{F}_{\mathfrak{q}}=\mathcal{O}_{K} / \mathfrak{q} \text { residual field } ;
$$

$\tilde{E} / \mathbf{F}_{\mathfrak{q}}$ reduction of E modulo \mathfrak{q};

$$
N(\mathfrak{q})=\left|\mathbf{F}_{\mathfrak{q}}\right| \text { norm of } \mathfrak{q} .
$$

Define

$$
a_{\mathfrak{q}}=N(\mathfrak{q})+1-\left|\widetilde{E}\left(\mathbf{F}_{\mathfrak{q}}\right)\right| \quad \text { and } \quad P_{\mathfrak{q}}(X)=X^{2}-a_{\mathfrak{q}} X+N(\mathfrak{q}) .
$$

Hasse: $\left|a_{\mathfrak{q}}\right| \leq 2 \sqrt{N(\mathfrak{q})}$ or, equivalently,

$$
P_{\mathfrak{q}}(X)=\left(X-\alpha_{\mathfrak{q}}\right)\left(X-\beta_{\mathfrak{q}}\right) \quad \text { with }\left|\alpha_{\mathfrak{q}}\right|=\left|\beta_{\mathfrak{q}}\right|=\sqrt{\mathrm{N}(\mathfrak{q})}
$$

General idea

Suppose that E is given by an integral Weierstrass equation of discriminant Δ_{E}.

General idea

Suppose that E is given by an integral Weierstrass equation of discriminant Δ_{E}.
For every prime number ℓ, one constructs an integer B_{ℓ} such that

$$
p \in \operatorname{Red}(E / K) \Longrightarrow p \mid 6 \Delta_{K} \cdot \mathrm{~N}\left(\Delta_{E}\right) \cdot B_{\ell} .
$$

General idea

Suppose that E is given by an integral Weierstrass equation of discriminant Δ_{E}.
For every prime number ℓ, one constructs an integer B_{ℓ} such that

$$
p \in \operatorname{Red}(E / K) \Longrightarrow p \mid 6 \Delta_{K} \cdot \mathrm{~N}\left(\Delta_{E}\right) \cdot B_{\ell}
$$

Remarks.
(1) We do not assume $\operatorname{End}_{K}(E)=\mathbf{Z}$,

General idea

Suppose that E is given by an integral Weierstrass equation of discriminant Δ_{E}.
For every prime number ℓ, one constructs an integer B_{ℓ} such that

$$
p \in \operatorname{Red}(E / K) \Longrightarrow p \mid 6 \Delta_{K} \cdot \mathrm{~N}\left(\Delta_{E}\right) \cdot B_{\ell}
$$

Remarks.
(1) We do not assume $\operatorname{End}_{K}(E)=\mathbf{Z}$, but if $\operatorname{End}_{K}(E) \neq \mathbf{Z}$, then $B_{\ell}=0$ for all ℓ.

General idea

Suppose that E is given by an integral Weierstrass equation of discriminant Δ_{E}.
For every prime number ℓ, one constructs an integer B_{ℓ} such that

$$
p \in \operatorname{Red}(E / K) \Longrightarrow p \mid 6 \Delta_{K} \cdot \mathrm{~N}\left(\Delta_{E}\right) \cdot B_{\ell} .
$$

Remarks.
(1) We do not assume $\operatorname{End}_{K}(E)=\mathbf{Z}$, but if $\operatorname{End}_{K}(E) \neq \mathbf{Z}$, then $B_{\ell}=0$ for all ℓ.
(2) By construction, $B_{\ell}=0$ if ℓ is 'bad', i.e. E has bad reduction at some prime ideal above ℓ.

General idea

Suppose that E is given by an integral Weierstrass equation of discriminant Δ_{E}.
For every prime number ℓ, one constructs an integer B_{ℓ} such that

$$
p \in \operatorname{Red}(E / K) \Longrightarrow p \mid 6 \Delta_{K} \cdot \mathrm{~N}\left(\Delta_{E}\right) \cdot B_{\ell} .
$$

Remarks.
(1) We do not assume $\operatorname{End}_{K}(E)=\mathbf{Z}$, but if $\operatorname{End}_{K}(E) \neq \mathbf{Z}$, then $B_{\ell}=0$ for all ℓ.
(2) By construction, $B_{\ell}=0$ if ℓ is 'bad', i.e. E has bad reduction at some prime ideal above ℓ.
(3) If $B_{\ell} \neq 0$ for some ('good') prime ℓ, then we get a bound on $\operatorname{Red}(E / K)$.

A monoïd law

The set $M=\{P \in \mathbf{Z}[X]$ monic such that $P(0) \neq 0\}$ equipped with the law $*$ defined for $P, Q \in M$ by

$$
(P * Q)(X)=\operatorname{Res}_{Z}\left(P(Z), Z^{\operatorname{deg}(Q)} Q\left(\frac{X}{Z}\right)\right)
$$

has a monoïd strucutre with identity element $\Psi_{1}(X)=X-1$.

A monoïd law

The set $M=\{P \in \mathbf{Z}[X]$ monic such that $P(0) \neq 0\}$ equipped with the law $*$ defined for $P, Q \in M$ by

$$
(P * Q)(X)=\operatorname{Res}_{Z}\left(P(Z), Z^{\operatorname{deg}(Q)} Q\left(\frac{X}{Z}\right)\right)
$$

has a monoïd strucutre with identity element $\Psi_{1}(X)=X-1$.
For any integer $r \geq 1$ and for any $P \in M$, there exists a unique polynomial $P^{(r)} \in M$ such that

$$
\left(P * \Psi_{r}\right)(X)=P^{(r)}\left(X^{r}\right), \quad \text { where } \Psi_{r}(X)=X^{r}-1
$$

The integers B_{ℓ}

For a good prime ℓ define

The integers B_{ℓ}

For a good prime ℓ define

$$
P_{\ell}^{*}=\underset{\mathfrak{q} \mid \ell}{*} P_{\mathfrak{q}}^{\left(12 v_{\mathfrak{q}}(\ell)\right)} \in \mathbf{Z}[X] \quad \text { and } \quad B_{\ell}=\prod_{k=0}^{\left\lfloor\frac{d}{2}\right\rfloor} P_{\ell}^{*}\left(\ell^{12 k}\right),
$$

where \mathfrak{q} runs through the prime ideals above ℓ and $v_{\mathfrak{q}}(\ell)$ denotes the valuation of $\ell \mathcal{O}_{K}$ at \mathfrak{q}.

The integers B_{ℓ}

For a good prime ℓ define

$$
P_{\ell}^{*}=\underset{\mathfrak{q} \mid \ell}{*} P_{\mathfrak{q}}^{\left(12 v_{\mathfrak{q}}(\ell)\right)} \in \mathbf{Z}[X] \quad \text { and } \quad B_{\ell}=\prod_{k=0}^{\left\lfloor\frac{d}{2}\right\rfloor} P_{\ell}^{*}\left(\ell^{12 k}\right),
$$

where \mathfrak{q} runs through the prime ideals above ℓ and $v_{\mathfrak{q}}(\ell)$ denotes the valuation of $\ell \mathcal{O}_{K}$ at \mathfrak{q}.

Remarks.
(1) If $\operatorname{End}_{K}(E) \neq \mathbf{Z}$, then $B_{\ell}=0$, for all ℓ.

The integers B_{ℓ}

For a good prime ℓ define

$$
P_{\ell}^{*}=\underset{\mathfrak{q} \mid \ell}{*} P_{\mathfrak{q}}^{\left(12 v_{\mathfrak{q}}(\ell)\right)} \in \mathbf{Z}[X] \quad \text { and } \quad B_{\ell}=\prod_{k=0}^{\left\lfloor\frac{d}{2}\right\rfloor} P_{\ell}^{*}\left(\ell^{12 k}\right),
$$

where \mathfrak{q} runs through the prime ideals above ℓ and $v_{\mathfrak{q}}(\ell)$ denotes the valuation of $\ell \mathcal{O}_{K}$ at \mathfrak{q}.

Remarks.
(1) If $\operatorname{End}_{K}(E) \neq \mathbf{Z}$, then $B_{\ell}=0$, for all ℓ.
(2) If d is odd, then $B_{\ell} \neq 0$, for every good ℓ.

For a good prime ℓ define

$$
P_{\ell}^{*}=\underset{\mathfrak{q} \mid \ell}{*} P_{\mathfrak{q}}^{\left(12 v_{\mathfrak{q}}(\ell)\right)} \in \mathbf{Z}[X] \quad \text { and } \quad B_{\ell}=\prod_{k=0}^{\left\lfloor\frac{d}{2}\right\rfloor} P_{\ell}^{*}\left(\ell^{12 k}\right)
$$

where \mathfrak{q} runs through the prime ideals above ℓ and $v_{\mathfrak{q}}(\ell)$ denotes the valuation of $\ell \mathcal{O}_{K}$ at \mathfrak{q}.
Remarks.
(1) If $\operatorname{End}_{K}(E) \neq \mathbf{Z}$, then $B_{\ell}=0$, for all ℓ.
(2) If d is odd, then $B_{\ell} \neq 0$, for every good ℓ.
(3) There exist K and E / K with $\operatorname{End}_{K}(E)=\mathbf{Z}$ such that $B_{\ell}=0$ for every ℓ,

For a good prime ℓ define

$$
P_{\ell}^{*}=\underset{\mathfrak{q} \mid \ell}{*} P_{\mathfrak{q}}^{\left(12 v_{\mathfrak{q}}(\ell)\right)} \in \mathbf{Z}[X] \quad \text { and } \quad B_{\ell}=\prod_{k=0}^{\left\lfloor\frac{d}{2}\right\rfloor} P_{\ell}^{*}\left(\ell^{12 k}\right)
$$

where \mathfrak{q} runs through the prime ideals above ℓ and $v_{\mathfrak{q}}(\ell)$ denotes the valuation of $\ell \mathcal{O}_{K}$ at \mathfrak{q}.
Remarks.
(1) If $\operatorname{End}_{K}(E) \neq \mathbf{Z}$, then $B_{\ell}=0$, for all ℓ.
(2) If d is odd, then $B_{\ell} \neq 0$, for every good ℓ.
(3) There exist K and E / K with $\operatorname{End}_{K}(E)=\mathbf{Z}$ such that $B_{\ell}=0$ for every ℓ, but it is 'rare' and in any case (assuming $\left.\operatorname{End}_{\overline{\mathbf{Q}}}(E)=\mathbf{Z}\right)$, another similar result applies.

The algorithm

For any integer $n \neq 0$, denote by $\Omega(n)$ its prime divisors.

The algorithm

For any integer $n \neq 0$, denote by $\Omega(n)$ its prime divisors.
(1) $S_{1}=\Omega\left(6 \Delta_{K} \cdot \mathrm{~N}\left(\Delta_{E}\right)\right)$.

For any integer $n \neq 0$, denote by $\Omega(n)$ its prime divisors.
(1) $S_{1}=\Omega\left(6 \Delta_{K} \cdot \mathrm{~N}\left(\Delta_{E}\right)\right)$.
(2) [initialisation] Search for $\ell_{0}<$ (bound1) such that we have $B_{\ell_{0}} \neq 0$. Set $B=B_{\ell_{0}}$.

For any integer $n \neq 0$, denote by $\Omega(n)$ its prime divisors.
(1) $S_{1}=\Omega\left(6 \Delta_{K} \cdot \mathrm{~N}\left(\Delta_{E}\right)\right)$.
(2) [initialisation] Search for $\ell_{0}<$ (bound1) such that we have $B_{\ell_{0}} \neq 0$. Set $B=B_{\ell_{0}}$.
(3) Search for $\ell_{1}, \ldots, \ell_{m}<$ (bound2) such that we have $B_{\ell_{i}} \neq 0$; for $i=1, \ldots, m$ do

For any integer $n \neq 0$, denote by $\Omega(n)$ its prime divisors.
(1) $S_{1}=\Omega\left(6 \Delta_{K} \cdot \mathrm{~N}\left(\Delta_{E}\right)\right)$.
(2) [initialisation] Search for $\ell_{0}<$ (bound1) such that we have $B_{\ell_{0}} \neq 0$. Set $B=B_{\ell_{0}}$.
(3) Search for $\ell_{1}, \ldots, \ell_{m}<$ (bound2) such that we have $B_{\ell_{i}} \neq 0$; for $i=1, \ldots, m$ do

- $B=\operatorname{gcd}\left(B, B_{\ell_{i}}\right), \quad S_{2}=\Omega(B) \quad$ and $\quad S=S_{1} \cup S_{2}$

For any integer $n \neq 0$, denote by $\Omega(n)$ its prime divisors.
(1) $S_{1}=\Omega\left(6 \Delta_{K} \cdot \mathrm{~N}\left(\Delta_{E}\right)\right)$.
(2) [initialisation] Search for $\ell_{0}<$ (bound1) such that we have $B_{\ell_{0}} \neq 0$. Set $B=B_{\ell_{0}}$.
(3) Search for $\ell_{1}, \ldots, \ell_{m}<$ (bound2) such that we have $B_{\ell_{i}} \neq 0$; for $i=1, \ldots, m$ do

- $B=\operatorname{gcd}\left(B, B_{\ell_{i}}\right), \quad S_{2}=\Omega(B) \quad$ and $\quad S=S_{1} \cup S_{2}$
- [cleaning]

$$
\begin{aligned}
S & \leftarrow S \backslash\left\{p \in S ; \exists \mathfrak{q} \text { good s.t. } P_{\mathfrak{q}} \text { irreducible } \bmod p\right\} \\
S_{1} & \leftarrow S \cap S_{1}
\end{aligned}
$$

For any integer $n \neq 0$, denote by $\Omega(n)$ its prime divisors.
(1) $S_{1}=\Omega\left(6 \Delta_{K} \cdot \mathrm{~N}\left(\Delta_{E}\right)\right)$.
(2) [initialisation] Search for $\ell_{0}<$ (bound1) such that we have $B_{\ell_{0}} \neq 0$. Set $B=B_{\ell_{0}}$.
(3) Search for $\ell_{1}, \ldots, \ell_{m}<$ (bound2) such that we have $B_{\ell_{i}} \neq 0$; for $i=1, \ldots, m$ do

- $B=\operatorname{gcd}\left(B, B_{\ell_{i}}\right), \quad S_{2}=\Omega(B) \quad$ and $\quad S=S_{1} \cup S_{2}$
- [cleaning]

$$
\begin{aligned}
S & \leftarrow S \backslash\left\{p \in S ; \exists \mathfrak{q} \text { good s.t. } P_{\mathfrak{q}} \text { irreducible } \bmod p\right\} \\
S_{1} & \leftarrow S \cap S_{1}
\end{aligned}
$$

(4) Determine $\operatorname{Red}(E / K) \subset S$.

TO DO

(1) Certify step 4 .
(1) Certify step 4.
(2) Test/compare.
(1) Certify step 4 .
(2) Test/compare.
(3) Compute equations of the isogenous curves/isogenies.
(1) Certify step 4 .
(2) Test/compare.
(3) Compute equations of the isogenous curves/isogenies.
(9) Compute the whole isogeny data (matrix, graph); see ellisomat command.

