
[Tutorial]

S-units and compact representations
in number fields

Karim Belabas

Atelier PARI/GP 2020 (22/01/2020) – p. 1/13

Use case / motivation

? T = x^6 + 2854*x^4 + 2036329*x^2 + 513996528;

? K = bnfinit(T); \\ K = Q[x]/(T), require class group and units

? K.fu \\ missing units

% = 0

? K = bnfinit(T, 1); \\ impose units computation

? K.fu

\\ . . . huge result deleted . . .

Huge algebraic numbers are problematic because

computing with them algebraically is expensive;

approximations via floating point embeddings into C require huge accuracy (cancellation);

they are often intermediate results: we do not want a result in K but in K∗/(K∗)2, or in

ZK/pk , or a floating point approximation to complex embeddings, or . . .

they may overflow the possibilities of the implementation: try 22100

.

Atelier PARI/GP 2020 (22/01/2020) – p. 2/13

Number field structures

Let K = Q[x]/(T) be a number field of degree [K : Q] = n; let

(r1, r2) be its signature, S∞ be the set of r1 real places and r2 complex places,

ZK = Z · b1 ⊕ · · · ⊕ Z · bn be its ring of integers and dK its absolute discriminant,

Cl(K) be its ideal class group,

U(K) = Z∗

K
∼ (Z/wZ) · ζw

⊕
Z · u1 · · · ⊕ Z · ur1+r2−1 be its unit group,

For S = S0 ∪ S∞ a finite set of places, let

US(K) = {x ∈ K∗, v(S) = 0 for all v 6∈ S}

be the S-unit group; i.e., US∞
(K) = U(K). The abelian group US(K) is generated by

ζw and #S − 1 elements of infinite order.

In PARI-speak

K = nfinit(T) allows K.pol, K.sign, K.zk, K.disc, K.p (ramified primes), . . .

K = bnfinit(T) further allows K.clgp, K.tu (w, ζw), K.fu (fundamental units), . . .

Atelier PARI/GP 2020 (22/01/2020) – p. 3/13

Number field elements

Elements of K are given as

elements of Q (rational form): 2, 1/3, . . .

polynomials (algebraic form): Mod(1 + x, T), or simply 1 + x (implicitly modulo T), . . .

vectors (basis form): [a1, . . . , an]~ for
∑

i aiwi, . . .

These formats are recognized as inputs by all functions handling algebraic numbers as number

field elements. The preferred output format are rational and basis form, in this order.

? K = nfinit(x^3 - 2);

? nfeltmul(K, x, x^2+1)

? nfelttrace(K, x+1)

? nfeltadd(K, x/2, [1,2,3])

? nfbasistoalg(K, %)

? nfalgtobasis(K, %)

Atelier PARI/GP 2020 (22/01/2020) – p. 4/13

Other lossy representations

For the record, let us mention

chinese remainders (idealchinese), including sign conditions at real embeddings;

projection to residue fields at maximal ideals (nfmodpr);

complex embeddings (nfeltembed, floating point);

projections to more general finite rings (ZK/f)∗, f = f0f∞ (ideallog);

reduction in K∗/(K∗)n (idealredmodpower).

factorization into maximal ideals (idealfactor), up to units;

These representations alleviate coefficient explosion: they reduce the size of objects and/or the

cost of handling them. But they all lose information.

Atelier PARI/GP 2020 (22/01/2020) – p. 5/13

NEW: Compact / factored representation (1/2)

In multiplicative contexts, an element of the form
∏

i gei

i
, where gi ∈ K∗ and ei ∈ Z, can now

be represented by a factorization matrix.

We do not have a UFD: the (gi) need not be coprime! The goal is twofold:

avoid coefficient explosion, measured by the size of the internal representation: compare

21000 · 3−2000 with its expanded form.

reduce costs of operations in multiplicative contexts: it is easy to multiply or divide formally

such objects, reduce modulo squares or larger powers, compute valuations, etc. More

generally apply group morphisms (K∗, ×) → G.

Atelier PARI/GP 2020 (22/01/2020) – p. 6/13

NEW: Compact / factored representation (2/2)

There are drawbacks:

non-multiplicative operations remain expensive, for instance to perform addition we must

expand the products first;

some of them lose useful properties, for instant equality testing: a fast probabilistic algorithm

proves that
∏

gei

i
6= 1, but it is hard to prove equality (the gi are not coprime); failing to

disprove equality, we may assume equality but we lose guarantees for later steps.

non-generic simplifications are not taken into account: when expanded outputs are small,

factored representations are likely to be larger ;

backward compatibility !

Atelier PARI/GP 2020 (22/01/2020) – p. 7/13

What does it change ? How to use it ? (1/2)

High level functions transparently use the mechanism behind the scenes (bnrclassfield,

bnrstark, bnflog, thue. . .), whenever units or class group computations arise.

By default, when handling a bnf = bnfinit(T) provided by the user, this strategy is less

efficient that it could be. It can fail because bnf contains floating point data that may not

always allow exact algebraic reconstructions. It may also contain huge units in expanded form

that contaminate later constructions.

bnf = bnfinit(T, 1) makes the strategy foolproof for that bnf, by computing all data in

exact algebraic form, using factored representations. Drawback: uses much more memory,

and is slower in the worst case although this is not noticeable on average in our tests.

We advise to use bnfinit(,1) for all computations and only disable it when it causes

bnfinit to run into problems.

Atelier PARI/GP 2020 (22/01/2020) – p. 8/13

What does it change ? How to use it ? (2/2)

Caveats / compatibility:

bnf.fu is specified to return units in expanded form. So use the new bnfunits instead,

which returns units in factored form (and extra information for bnfisunit).

bnfisprincipal is specified to return principal ideals in expanded form. So use the new

bnfisprincipal(,4) flag.

Example: some random real quadratic field. Try these snippets with bnfinit instead of

bnfinit(,1).

D = 1000001273;

K = bnfinit(x^2 - D, 1);

bnfunits(K)

K.fu

P = idealprimedec(K,2)[1];

bnfisprincipal(K, P)

bnfisprincipal(K, P, 4) \\ factored representation

bnfisprincipal(K, P, 3) \\ expanded; no longer do this !
Atelier PARI/GP 2020 (22/01/2020) – p. 9/13

Addendum: S-units

bnfunits also allows to work with general S-units (together with bnfisunit). The functions

bnfsunit and bnfissunit are now deprecated.

S = idealprimedec(K,2);

U = bnfunits(K, S)

bnfisunit(K, 2) \\ not a unit

bnfisunit(K, 2, U) \\ . . . but an S-unit

Atelier PARI/GP 2020 (22/01/2020) – p. 10/13

Using compact / factored representation

Functions in multiplicative context work “out of the box” with factored representations. ? K =

nfinit(x^3 - 2);

? u = [x, 2; [1,2,3]~,-1];

? v = [x+1, 1; [-1,2,3]~,2];

? nffactorback(K, u)

%4 = [32/89, 2/89, -11/89]~
? nfeltmul(K, u, v)

%5 =

[x 2]

[[1, 2, 3] -1]

[x + 1 1]

[[-1, 2, 3]~ 2]

Atelier PARI/GP 2020 (22/01/2020) – p. 11/13

Using compact / factored representation

? nfeltpow(K, u, 2)

%6 =

[x 4]

[[1, 2, 3]~ -2]

? nfeltdiv(K, u, 2)

%7 =

[x 2]

[[1, 2, 3]~ -1]

[2 -1]

? nfeltnorm(K, u)

%8 = 4/89

Atelier PARI/GP 2020 (22/01/2020) – p. 12/13

Using compact / factored representation

? nffactorback(K, [u,v], [2,3]) \\ still factored

%9 =

[x 4]

[[1, 2, 3]~ -2]

[x + 1 3]

[[-1, 2, 3]~ 6]

? nffactorback(K, %) \\ now expand completely

%10 = [93209292/7921, 57744198/7921, 25490430/7921]~
? nfelttrace(K, u) \\ not multiplicative ! Fails . . .

? P = idealprimedec(K,5)[2]; nfmodpr(K, v, P)

%11 = 3*x + 3

? bid = idealstar(K, 5); ideallog(K, v, bid)

%12 = [7, 0]~

Atelier PARI/GP 2020 (22/01/2020) – p. 13/13

