Subfields and Abelian overfields

A. Page

INRIA/Université de Bordeaux

21/01/2020
Institut Fourier

Plan

This tutorial:

- construction of subfields of a number field
- construction of abelian extensions of a number field These are old functionalities but we made a number of changes to them.

If you want to record the commands we will type during the tutorial:
? \l subsupfields.log

Subfields

We compute the subfields of a number field with the function nfsubfields.
? poll $=\mathrm{y}^{\wedge} 8-\mathrm{y}^{\wedge} 6+2 \star \mathrm{y}^{\wedge} 2+1$;
? \#nfsubfields(pol1)
$\%=6$
This number field has 6 subfields.

```
? #nfsubfields(pol1,4)
% = 3
```

Three of them have degree 4 over \mathbb{Q}.

Subfields and embeddings

For each subfield, the function gives a defining polynomial and an element of the large field defining the embedding.

```
? subl = nfsubfields (pol1, 4)
\(\%=\left[\left[y^{\wedge} 4-\ldots, 2 * y^{\wedge} 7-\ldots\right],\left[y^{\wedge} 4-\ldots\right.\right.\),
    \(\left.\left.-2 \star y^{\wedge} 7+\ldots\right],\left[y^{\wedge} 4-\ldots,-y^{\wedge} 2+1\right]\right]\)
? \(a=y^{\wedge} 2+y\);
? minpoly (Mod (a, sub1[1][1]))
\(\%=x^{\wedge} 4+2 * x^{\wedge} 3+76 * x^{\wedge} 2+60 * x+12\)
```

We can compute the image of a in the large field with subst.
? minpoly (Mod(subst (a,y, sub1[1] [2]), pol1))
$\%=x^{\wedge} 4+2 \star x^{\wedge} 3+76 * x^{\wedge} 2+60 * x+12$

Subfields

We can also use an nfinit structure as input.
? nf1 = nfinit(poli);
? \#nfsubfields (nf1,2)
$\%=1$

Algorithms for subfields

Depending on the situation, we use various algorithms to compute subfields of $K=\mathbb{Q}[X] / P(X)$.

1. Galois theory (Allombert);
2. A combinatorial algorithm (Klüners);
3. A factorisation based algorithm (van Hoeij - Klüners Novocin).
4. is always faster when available, 3 . is polynomial-time, and 2. is exponential in the worst case but it is often fast.

In 3., we need the factorisation of P over K.

Subfields: providing the factorisation

We can provide the factorisation to the function. This forces the use of Algorithm 3. and saves the recomputation of the factorisation.

$$
\begin{aligned}
& ? \text { fal }=\text { nffactor }(p o l 1, \text { subst }(p o l 1, y, x)) ; \\
& ? \text { sublb }=\text { nfsubfields }([p o l 1, f a 1], 4) \\
& \%=\left[\left[y^{\wedge} 4+\ldots,-y^{\wedge} 5+\ldots\right],\left[y^{\wedge} 4+\ldots,-y^{\wedge} 2\right],\right. \\
& \left.\quad\left[y^{\wedge} 4+\ldots,-y^{\wedge} 3+y\right]\right]
\end{aligned}
$$

We can check that we obtained the same subfields with nfisisom.

$$
\begin{aligned}
& ? \text { nfisisom(sub1[1][1], sub1b[1][1]) } \\
& \%=\left[-1 / 2 * y^{\wedge} 3-1 / 2 * y^{\wedge} 2-3 / 2 * y-1 / 2\right. \\
& \left.1 / 2 * y^{\wedge} 3-1 / 2 * y^{\wedge} 2+3 / 2 * y-1 / 2\right]
\end{aligned}
$$

Subfields: providing the factorisation

There is no canonical ordering for the subfields, so they may end up being permuted.

```
? matrix(#sub1,#sub1b,i,j,
    nfisisom(sub1[i][1],sub1b[j][1])!=0)
% =
[1 0 0]
[0 0 1]
[0 1 0]
```


Maximal subfields

We can restrict to the enumeration of maximal subfields with the function nfsubfieldsmax.

```
? {pol2 = x^16 - 4*x^15 + 34*x^14 - 102*x^13 +
    620*x^12 - 1542*x^11 + 7436*x^10 - 14962*x^9 +
    67815*x^8 - 111634*x^7 + 409898*x^6 - 504000**^5
    + 1459447*x^4 - 1224212**^3 + 3769899**^^2 -
    1828918*x + 6914293};
? sub2 = nfsubfieldsmax(pol2);
? apply(a -> poldegree(a[1]), sub2)
% = [4, 8, 8, 8]
```

They do not always have the same degree.

Maximal subfields: providing the factorisation

This uses a variant of Algorithm 3., and we can also provide the factorisation.

```
? fa2 = nffactor(pol2, subst(pol2,x,t));
    *** incorrect priority: variable t >= x
```

Watch out for the priority of variables!

```
? t = varhigher("t");
? fa2 = nffactor(pol2, subst(pol2,x,t));
? nfsubfieldsmax([pol2,fa2]) == sub2
% = 1
```


Descending further

We can then compute subfields of the maximal subfields, etc.


```
+276*\mp@subsup{y}{}{\wedge}6-720*\mp@subsup{Y}{}{\wedge}5+1776*\mp@subsup{y}{}{\wedge}4-2360*\mp@subsup{y}{}{\wedge}3+
2160*Y^2 - 1200*y + 400};
? sub3 = nfsubfieldsmax(pol3);
? apply(a -> poldegree(a[1]), sub3)
% [4, 6]
? sub3b = nfsubfieldsmax(sub3[1] [1])
% = [[y^2 - ...ugly...]
```

We can simplify the models with polredbest.
? polredbest (sub3b[1][1])
$\%=y^{\wedge} 2-y-1$

CM fields

Recall that a number field K is called CM (complex multiplication) if it is a totally imaginary quadratic extension of a totally real field.

In this case, it admits an automorphism of order 2 which induces complex conjugation on every embedding of K into \mathbb{C}; this automorphism is called the CM involution or the complex conjugation on K.

Maximal CM subfield

We can also compute the maximal CM subfield (if it exists).
? nfsubfieldscm(poli)
$\%=\left[y^{\wedge} 2+3,2 * y^{\wedge} 6-4 * y^{\wedge} 4+2 * y^{\wedge} 2+3\right]$
? sub2b = nfsubfieldscm([pol2,fa2])
$\% \quad\left[x^{\wedge} 4+\ldots * x^{\wedge} 2+\ldots, \ldots\right]$
The computed model always satisfies that $x \mapsto-x$ is the CM involution.
In polredbest, we can keep track of the change of variable with an optional flag $=1$.
? polredbest (sub2b[1],1)
$\%=\left[x^{\wedge} 4-2 * x^{\wedge} 3-11 * x^{\wedge} 2+12 \star x+57, \ldots\right]$
? polredbest (substpol(sub2b[1], $\left.x^{\wedge} 2, x\right)$)
$\%=x^{\wedge} 2-7$

Abelian extensions of \mathbb{Q}

Recall that every Abelian extension of \mathbb{Q} is contained in a cyclotomic field (Kronecker-Weber).
polsubcyclo($n, d)$ computes every subfield of $\mathbb{Q}\left(\zeta_{n}\right)$ of degree d.

```
? polsubcyclo(23,11)
```



```
    - 56*x^5 - 35*x^4 + 35*x^3 + 15*x^2 - 6*x - 1
```

galoissubcyclo computes the subfield fixed by a given subgroup of $(\mathbb{Z} / n \mathbb{Z})^{\times}$.
? \#polsubcyclo $(60,8)$
$\%=7$
? galoissubcyclo (60,-1)
$\%=x^{\wedge} 8-7 * x^{\wedge} 6+14 * x^{\wedge} 4-8 * x^{\wedge} 2+1$

Abelian extensions of \mathbb{Q}

We compute the structure and generators of $(\mathbb{Z} / n \mathbb{Z})^{\times}$
with znstar.
? $\mathrm{G}=$ znstar $(7 * 13 * 19)$
$\%=[1296,[36,6,6],[\operatorname{Mod}(743,1729), \operatorname{Mod}(248,17$
We can describe the subgroup in terms of those generators.
? $\mathrm{H}=\operatorname{math} \mathrm{f} \operatorname{modid}([1,0 ;-1,1 ; 0,-1], 3)$;
? galoissubcyclo(G, H)
$\%=x^{\wedge} 3+x^{\wedge} 2-576 * x-64$
? nfdiscfactors (\%)
\% $=$ [2989441, $[7,2 ; 13,2 ; 19,2]]$

Abelian extensions of number fields

In general, the Abelian extensions of a number field K are the subfields of its ray class fields, whose Galois groups are canonically isomorphic to the ray class groups $\mathcal{C} \ell_{K}(\mathfrak{m})$.
(Class field theory)
The special case $\mathfrak{m}=(1)$ is the Hilbert class field.

Transcendental methods

In some cases we can use transcendental methods to compute ray class fields.

Hilbert and ray class fields of quadratic fields:
? quadhilbert(-23)
$\%=x^{\wedge} 3-x^{\wedge} 2+1$
? quadray (-7,8)
$\%=x^{\wedge} 8+\operatorname{Mod}\left(-4 * y+4, y^{\wedge} 2-y+2\right) * x^{\wedge} 7+\ldots$
Assuming Stark's conjectures, ray class fields of totally real fields:
? bnrstark(bnrinit(bnfinit(y^3-y^2-41*y+104),1))
$\%=x^{\wedge} 9+\ldots$

Kummer theory method

In all cases we can use Kummer theory. This can be costly since we need to compute the class group and units of $K\left(\zeta_{p}\right)$ to compute extensions of degree p of K, and towers of such for general Abelian extensions.

The function rnfkummer is now obsolete; use the more general bnrclassfield instead, which we will present now.

Hilbert class field

$$
\begin{aligned}
& ? \text { pol4 }=y^{\wedge} 2-y+1007 \\
& \%=y^{\wedge} 2-y+1007 \\
& ? \text { bnf }=\text { bnfinit }(\operatorname{pol} 4) ; \text { bnf.cyc } \\
& \%=[3,3]
\end{aligned}
$$

The class group is isomorphic to $\mathbb{Z} / 3 \mathbb{Z} \times \mathbb{Z} / 3 \mathbb{Z}$.
? ext4 = bnrclassfield(bnf)
$\%=\left[x^{\wedge} 3-15 * x+(-1204 * y+602), x^{\wedge} 3+\ldots\right]$
By default, the class field is expressed as the compositum of two degree 3 extensions. We can compute a single defining polynomial with nfcompositum.
? nfcompositum(bnf,ext $4[1]$,ext $4[2], 2)$
$\%=x^{\wedge} 9+\ldots$

Hilbert class field

We can directly ask for a single relative defining polynomial with an optional flag $=1$.
? bnrclassfield(bnf, 1)
$\%=x^{\wedge} 9+18 * x^{\wedge} 7+\ldots$
We can also ask for a single absolute defining polynomial with an optional flag $=2$.
? bnrclassfield(bnf, 2)
$\%=x^{\wedge} 18+36 * x^{\wedge} 16+4860 * x^{\wedge} 14+\ldots$

Ray class groups

We compute general ray class groups with bnrinit.

```
? pr = idealprimedec(bnf,13)[1];
? bnr = bnrinit(bnf,pr); bnr.cyc
% = [18, 3]
```

This ray class group is isomorphic to $\mathbb{Z} / 18 \mathbb{Z} \times \mathbb{Z} / 3 \mathbb{Z}$. We can compute the discriminant of the corresponding extension in advance with bnrdisc.
? [deg,r1,D] = bnrdisc(bnr);
? deg
$\% 59=108$
? D
\% = 625833566280085268...18199167302475256851237

Ray class fields

$$
\begin{aligned}
& ? \text { ext } 2=\text { bnrclassfield(bnr) } \\
& \%=\left[x^{\wedge} 2+(y+34), x^{\wedge} 3+\ldots, x^{\wedge} 9+\ldots\right]
\end{aligned}
$$

Again, the ray class field is expressed as a compositum of several extensions.

We can simplify the relative defining polynomials
with rnfpolredbest.

```
? apply(P -> lift(rnfpolredbest(bnf,P)), ext2)
% = [ x^2 + (y + 34), x^3 - 24*x + (2* y - 1),
x^9 - x^^8 + (-y - 5)* x^7 + ... + (-262*y + 10515)]
```


Ray class fields

Again, we can ask for an absolute defining polynomial.
? ext2b $=$ bnrclassfield(bnr, 2)
\% = $x^{\wedge} 108+24 * x^{\wedge} 107+229 * x^{\wedge} 106-128 * x^{\wedge} 105-\ldots$
We can check that the discriminant is correct with nfdisc.
? nfdisc([ext2b,1000]) == D
$\%=1$
Note that this is much more expensive than with bnrdisc, and we needed to help nfdisc by forcing it to use a lazy factorisation.

General class fields

In general we describe the desired Abelian extension as the subfield of a ray class field fixed by a subgroup of $\mathcal{C} \ell_{K}(\mathfrak{m})$.
? pr2 = idealprimedec (bnf,2) [1];
? bnr2 = bnrinit(bnf,[pr,1;pr2,3]); bnr2.cyc
$\%=[36,12,6]$
? H2 $=[2,1,1 ; 0,2,0 ; 0,0,1]$
\% =
$\left[\begin{array}{lll}2 & 1 & 1\end{array}\right]$
$\left[\begin{array}{lll}0 & 2 & 0\end{array}\right]$
$\left[\begin{array}{lll}0 & 0 & 1\end{array}\right]$
? bnrclassfield(bnr2,H2)
$\%=\left[x^{\wedge} 4+78 * x^{\wedge} 2+(-92 * y+1396)\right]$

Shortcut for describing the subgroup

We can use the shortcut bnrclassfield (bnr, n) to denote the subgroup $n \cdot \mathcal{C} \ell_{K}(\mathfrak{m})$.

```
? ext3 = bnrclassfield(bnr2,3)
% = [x^3 - 15*x + ..., x^3 + ..., x^3 + ...]
```

This is the maximal elementary Abelian 3-subextension.

```
? ext3 = bnrclassfield(bnr2,9)
% = [x^3 + ..., x^3 + ..., x^9 + ...]
```

This is the maximal Abelian subextension with exponent dividing 9 .

Without the explicit field

Computing a defining polynomial with bnrclassfield can be time-consuming, so it is better to compute the relevant information without constructing the field, if possible.
We already saw the use of bnrdisc; we can also compute splitting information without the explicit field.

```
? pr313 = idealprimedec(bnf,313) [1];
? bnrisprincipal(bnr2,pr313,0)
% = [0, 0, 0] ~
```

The Frobenius at \mathfrak{p}_{313} is trivial: this prime splits completely in the degree $36 \cdot 12 \cdot 6=2592$ extension (which we did not compute).

Modulus with infinite places

If the base field has real places, we can specify the modulus at infinity by providing a list of 0 or 1 of length the number of real embeddings.
? bnf2 = bnfinit($\mathrm{y}^{\wedge} 2-217$);
? bnf2.cyc
\% = []
? bnrinit(bnf2,1).cyc
\% = []
? bnr3 = bnrinit(bnf2, [1, [1,1]]); bnr3.cyc
$\%=[2]$
The field $\mathbb{Q}(\sqrt{217})$ has narrow class number 2.

A narrow Hilbert class field

We check that the class field has the expected properties:

```
? \([\operatorname{deg}, r 1, \mathrm{D}]=\) bnrdisc (bnr3);
? [deg, r1]
\(\%=[4,0]\)
? D
\(\%=47089\)
? bnrclassfield (bnr3)
\(\%=\left[x^{\wedge} 2+(-260952 * y+3844063)\right]\)
? pol5 = bnrclassfield(bnr3, 2)
\(\%=x^{\wedge} 4+7688126 * x^{\wedge} 2+1\)
? polsturm (pol5)
\% = 0
? nfdisc(pol5) == D
\(\%=1\)
```


Questions ?

Have fun!

