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Subfields and Abelian overfields

Plan

This tutorial:
I construction of subfields of a number field
I construction of abelian extensions of a number field

These are old functionalities but we made a number of changes
to them.

If you want to record the commands we will type during the
tutorial:

? \l subsupfields.log
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Subfields

We compute the subfields of a number field with the
function nfsubfields.

? pol1 = y^8 - y^6 + 2*y^2 + 1;
? #nfsubfields(pol1)
% = 6

This number field has 6 subfields.

? #nfsubfields(pol1,4)
% = 3

Three of them have degree 4 over Q.
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Subfields and embeddings

For each subfield, the function gives a defining polynomial and
an element of the large field defining the embedding.

? sub1 = nfsubfields(pol1,4)
% = [[y^4 - ... , 2*y^7 - ...], [y^4 - ...,
-2*y^7 + ...], [y^4 - ..., -y^2 + 1]]

? a = y^2+y;
? minpoly(Mod(a,sub1[1][1]))
% = x^4 + 2*x^3 + 76*x^2 + 60*x + 12

We can compute the image of a in the large field with subst.

? minpoly(Mod(subst(a,y,sub1[1][2]),pol1))
% = x^4 + 2*x^3 + 76*x^2 + 60*x + 12



Subfields and Abelian overfields

Subfields

We can also use an nfinit structure as input.

? nf1 = nfinit(pol1);
? #nfsubfields(nf1,2)
% = 1
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Algorithms for subfields

Depending on the situation, we use various algorithms to
compute subfields of K = Q[X ]/P(X ).

1. Galois theory (Allombert);
2. A combinatorial algorithm (Klüners);
3. A factorisation based algorithm (van Hoeij – Klüners –

Novocin).
1. is always faster when available, 3. is polynomial-time, and 2.
is exponential in the worst case but it is often fast.

In 3., we need the factorisation of P over K .
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Subfields: providing the factorisation
We can provide the factorisation to the function. This forces the
use of Algorithm 3. and saves the recomputation of the
factorisation.

? fa1 = nffactor(pol1, subst(pol1,y,x));
? sub1b = nfsubfields([pol1,fa1],4)
% = [[y^4 + ..., -y^5 + ...], [y^4 + ..., -y^2],
[y^4 + ..., -y^3 + y]]

We can check that we obtained the same subfields
with nfisisom.

? nfisisom(sub1[1][1],sub1b[1][1])
% = [-1/2*y^3 - 1/2*y^2 - 3/2*y - 1/2,
1/2*y^3 - 1/2*y^2 + 3/2*y - 1/2]
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Subfields: providing the factorisation

There is no canonical ordering for the subfields, so they may
end up being permuted.

? matrix(#sub1,#sub1b,i,j,
nfisisom(sub1[i][1],sub1b[j][1])!=0)

% =
[1 0 0]

[0 0 1]

[0 1 0]
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Maximal subfields

We can restrict to the enumeration of maximal subfields with
the function nfsubfieldsmax.

? {pol2 = x^16 - 4*x^15 + 34*x^14 - 102*x^13 +
620*x^12 - 1542*x^11 + 7436*x^10 - 14962*x^9 +
67815*x^8 - 111634*x^7 + 409898*x^6 - 504000*x^5
+ 1459447*x^4 - 1224212*x^3 + 3769899*x^2 -
1828918*x + 6914293};

? sub2 = nfsubfieldsmax(pol2);
? apply(a -> poldegree(a[1]), sub2)
% = [4, 8, 8, 8]

They do not always have the same degree.
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Maximal subfields: providing the factorisation

This uses a variant of Algorithm 3., and we can also provide the
factorisation.

? fa2 = nffactor(pol2, subst(pol2,x,t));

*** incorrect priority: variable t >= x

Watch out for the priority of variables!

? t = varhigher("t");
? fa2 = nffactor(pol2, subst(pol2,x,t));
? nfsubfieldsmax([pol2,fa2]) == sub2
% = 1
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Descending further
We can then compute subfields of the maximal subfields, etc.

? {pol3 = y^12 + 6*y^10 - 10*y^9 + 36*y^8 - 60*y^7
+ 276*y^6 - 720*y^5 + 1776*y^4 - 2360*y^3 +
2160*y^2 - 1200*y + 400};
? sub3 = nfsubfieldsmax(pol3);
? apply(a -> poldegree(a[1]), sub3)
% = [4, 6]
? sub3b = nfsubfieldsmax(sub3[1][1])
% = [[y^2 - ...ugly...]

We can simplify the models with polredbest.

? polredbest(sub3b[1][1])
% = y^2 - y - 1
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CM fields

Recall that a number field K is called CM (complex
multiplication) if it is a totally imaginary quadratic extension of a
totally real field.

In this case, it admits an automorphism of order 2 which
induces complex conjugation on every embedding of K into C;
this automorphism is called the CM involution or the complex
conjugation on K .
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Maximal CM subfield
We can also compute the maximal CM subfield (if it exists).

? nfsubfieldscm(pol1)
% = [y^2 + 3, 2*y^6 - 4*y^4 + 2*y^2 + 3]
? sub2b = nfsubfieldscm([pol2,fa2])
% = [x^4 + ...*x^2 + ..., ...]

The computed model always satisfies that x 7→ −x is the CM
involution.
In polredbest, we can keep track of the change of variable
with an optional flag = 1.

? polredbest(sub2b[1],1)
% = [x^4 - 2*x^3 - 11*x^2 + 12*x + 57, ...]
? polredbest(substpol(sub2b[1],x^2,x))
% = x^2 - 7



Subfields and Abelian overfields

Abelian extensions of Q
Recall that every Abelian extension of Q is contained in a
cyclotomic field (Kronecker–Weber).
polsubcyclo(n,d) computes every subfield of Q(ζn) of
degree d .

? polsubcyclo(23,11)
% = x^11 + x^10 - 10*x^9 - 9*x^8 + 36*x^7 + 28*x^6
- 56*x^5 - 35*x^4 + 35*x^3 + 15*x^2 - 6*x - 1

galoissubcyclo computes the subfield fixed by a given
subgroup of (Z/nZ)×.

? #polsubcyclo(60,8)
% = 7
? galoissubcyclo(60,-1)
% = x^8 - 7*x^6 + 14*x^4 - 8*x^2 + 1
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Abelian extensions of Q

We compute the structure and generators of (Z/nZ)×
with znstar.

? G = znstar(7*13*19)
% = [1296, [36, 6, 6], [Mod(743, 1729), Mod(248, 1729), Mod(407, 1729)]]

We can describe the subgroup in terms of those generators.

? H = mathnfmodid([1,0;-1,1;0,-1],3);
? galoissubcyclo(G,H)
% = x^3 + x^2 - 576*x - 64
? nfdiscfactors(%)
% = [2989441, [7, 2; 13, 2; 19, 2]]
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Abelian extensions of number fields

In general, the Abelian extensions of a number field K are the
subfields of its ray class fields, whose Galois groups are
canonically isomorphic to the ray class groups C`K (m).
(Class field theory)

The special case m = (1) is the Hilbert class field.
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Transcendental methods
In some cases we can use transcendental methods to compute
ray class fields.

Hilbert and ray class fields of quadratic fields:

? quadhilbert(-23)
% = x^3 - x^2 + 1
? quadray(-7,8)
% = x^8 + Mod(-4*y + 4, y^2 - y + 2)*x^7 + ...

Assuming Stark’s conjectures, ray class fields of totally real
fields:

? bnrstark(bnrinit(bnfinit(y^3-y^2-41*y+104),1))
% = x^9 + ...
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Kummer theory method

In all cases we can use Kummer theory. This can be costly
since we need to compute the class group and units of K (ζp) to
compute extensions of degree p of K , and towers of such for
general Abelian extensions.

The function rnfkummer is now obsolete; use the more
general bnrclassfield instead, which we will present now.
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Hilbert class field

? pol4 = y^2-y+1007
% = y^2 - y + 1007
? bnf = bnfinit(pol4); bnf.cyc
% = [3, 3]

The class group is isomorphic to Z/3Z× Z/3Z.

? ext4 = bnrclassfield(bnf)
% = [x^3 - 15*x + (-1204*y + 602), x^3 + ...]

By default, the class field is expressed as the compositum of
two degree 3 extensions. We can compute a single defining
polynomial with nfcompositum.

? nfcompositum(bnf,ext4[1],ext4[2],2)
% = x^9 + ...
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Hilbert class field

We can directly ask for a single relative defining polynomial with
an optional flag = 1.

? bnrclassfield(bnf,,1)
% = x^9 + 18*x^7 + ...

We can also ask for a single absolute defining polynomial with
an optional flag = 2.

? bnrclassfield(bnf,,2)
% = x^18 + 36*x^16 + 4860*x^14 + ...
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Ray class groups
We compute general ray class groups with bnrinit.

? pr = idealprimedec(bnf,13)[1];
? bnr = bnrinit(bnf,pr); bnr.cyc
% = [18, 3]

This ray class group is isomorphic to Z/18Z× Z/3Z. We can
compute the discriminant of the corresponding extension in
advance with bnrdisc.

? [deg,r1,D] = bnrdisc(bnr);
? deg
%59 = 108
? D
% = 625833566280085268...18199167302475256851237
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Ray class fields

? ext2 = bnrclassfield(bnr)
% = [x^2 + (y + 34), x^3 + ..., x^9 + ...]

Again, the ray class field is expressed as a compositum of
several extensions.

We can simplify the relative defining polynomials
with rnfpolredbest.

? apply(P -> lift(rnfpolredbest(bnf,P)), ext2)
% = [x^2 + (y + 34), x^3 - 24*x + (2*y - 1),
x^9 - x^8 + (-y - 5)*x^7 + ... + (-262*y + 10515)]
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Ray class fields

Again, we can ask for an absolute defining polynomial.

? ext2b = bnrclassfield(bnr,,2)
% = x^108 + 24*x^107 + 229*x^106 - 128*x^105 - ...

We can check that the discriminant is correct with nfdisc.

? nfdisc([ext2b,1000]) == D
% = 1

Note that this is much more expensive than with bnrdisc, and
we needed to help nfdisc by forcing it to use a lazy
factorisation.
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General class fields

In general we describe the desired Abelian extension as the
subfield of a ray class field fixed by a subgroup of C`K (m).

? pr2 = idealprimedec(bnf,2)[1];
? bnr2 = bnrinit(bnf,[pr,1;pr2,3]); bnr2.cyc
% = [36, 12, 6]
? H2 = [2,1,1;0,2,0;0,0,1]
% =
[2 1 1]
[0 2 0]
[0 0 1]
? bnrclassfield(bnr2,H2)
% = [x^4 + 78*x^2 + (-92*y + 1396)]
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Shortcut for describing the subgroup

We can use the shortcut bnrclassfield(bnr,n) to denote
the subgroup n · C`K (m).

? ext3 = bnrclassfield(bnr2,3)
% = [x^3 - 15*x + ..., x^3 + ..., x^3 + ...]

This is the maximal elementary Abelian 3-subextension.

? ext3 = bnrclassfield(bnr2,9)
% = [x^3 + ..., x^3 + ..., x^9 + ...]

This is the maximal Abelian subextension with exponent
dividing 9.
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Without the explicit field

Computing a defining polynomial with bnrclassfield can be
time-consuming, so it is better to compute the relevant
information without constructing the field, if possible.
We already saw the use of bnrdisc; we can also compute
splitting information without the explicit field.

? pr313 = idealprimedec(bnf,313)[1];
? bnrisprincipal(bnr2,pr313,0)
% = [0, 0, 0]~

The Frobenius at p313 is trivial: this prime splits completely in
the degree 36 · 12 · 6 = 2592 extension (which we did not
compute).
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Modulus with infinite places

If the base field has real places, we can specify the modulus at
infinity by providing a list of 0 or 1 of length the number of real
embeddings.

? bnf2 = bnfinit(y^2-217);
? bnf2.cyc
% = []
? bnrinit(bnf2,1).cyc
% = []
? bnr3 = bnrinit(bnf2,[1,[1,1]]); bnr3.cyc
% = [2]

The field Q(
√

217) has narrow class number 2.
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A narrow Hilbert class field
We check that the class field has the expected properties:

? [deg,r1,D] = bnrdisc(bnr3);
? [deg,r1]
% = [4, 0]
? D
% = 47089
? bnrclassfield(bnr3)
% = [x^2 + (-260952*y + 3844063)]
? pol5 = bnrclassfield(bnr3,,2)
% = x^4 + 7688126*x^2 + 1
? polsturm(pol5)
% = 0
? nfdisc(pol5) == D
% = 1
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Questions ?

Have fun!


