
A Flatter implementation in PARI

A Flatter implementation in PARI

B. Allombert

IMB
CNRS/Université de Bordeaux

12/01/2024

A Flatter implementation in PARI

FLATTER

FLATTER is a new lattice reduction algorithm developped by
Keegan Ryan and Nadia Heninger which is much faster for a lot
of instance that are relevant to number theory and PARI/GP, in
particular, T2 reduction of order and ideal bases, and
knapsack-like lattice of small dimensions with large entries.
Keegan Ryan provides a fast implementation targetting
cryptographic challenges.
We implemented in PARI/GP a version of the algorithm more
suitable for applications in number theory.

A Flatter implementation in PARI

Lattices

For the purpose of reduction, a n-dimensional lattice is a
Z-linear map from Zn to (Rn, <>) with matrix M.
There are two kinds of basis changes:
I Right basis change by a matrix in GLn(Z),
I Left basis change by a matrix in On(R).

Only the right basis change actually reduce the lattice.

A Flatter implementation in PARI

Gram-Schmidt orthogonalization

Gram-Schmidt orthogonalization computes an orthogonal
matrix U such that UM is upper-triangular with non-zeros
diagonal entries. Unfortunately computing U using exact
arithmetic is slow, and using floating point approximation can
lead to accuracy errors.

A Flatter implementation in PARI

Profile

The diagonal entries b∗i,i of UM (the norms of the Gram-Schmidt
basis vectors) allows to compute the profile which allows to
measure the quality of the reduction, in particular the potential∏

||b∗i,i ||1/n+1−i and the spread max(||b∗i,i ||)/min(||b∗i,i ||). and the
drop D =

∑n−1
i=1 max(0, log(|b∗i,i/b∗i+1,i+1|)).

Ryan-Heninger suggest to use as bit precision 30 + 3n + 2D.
However, to compute the drop, we need enough precision so
that the resulting ||b∗i,i || are not too inaccurate.

A Flatter implementation in PARI

Integral renormalization

If a matrix M has floating point entries, before performing LLL,
the matrix is rescaled by a power of 2 depending of the
accuracy and the exponents and entries are truncated to
integers.

A Flatter implementation in PARI

FLATTER algorithm

1. If M is not integral, perform Integral renormalization on M.
2. Apply the following recursive reduction step until the matrix

is close to reduced:
2.1 Gram-Schmidt orthogonalization
2.2 First Recursions
2.3 Size reduction
2.4 Second Gram-Schmidt orthogonalization
2.5 Second recursion

3. Perform LLL reduction on the nearly reduced matrix and
return.

A Flatter implementation in PARI

Step 1: Gram-Schmidt orthogonalization

Perform Gram-Schmidt orthogonalization on M using floating
point arithmetic to some precision to find an orthogonal matrix
U so that R = UM is upper triangular. (Practically we only need
to compute R).

A Flatter implementation in PARI

Step 2: First Recursions

Write R as R =

(
R1 R2
0 R3

)
, with R1 of dimension [d/2].

Note that R1 and R3 are upper triangular.
Call recursively the algorithm to R1 and R3 to get unimodular

transformation matrices T1 and T3 and set T =

(
T1 0
0 T3

)
which is also unimodular.

A Flatter implementation in PARI

Step 3: Size reduction

Set S =

(
1 S2
0 1

)
for some integral matrix S2.

RTS =

(
R1T1 R1T1S2 + R3T3

0 R3T3

)
.

Pick S2 = round(T−1
1 (R−1

1 R3)T3) so as to minimize
R1T1S2 + R3T3.

TS =

(
T1 T1S2
0 T3

)
.

A Flatter implementation in PARI

Step 4: Second Gram-Schmidt orthogonalization

Perform Gram-Schmidt orthogonalization on MTS using
floating point arithmetic to some precision to find an orthogonal
matrix U ′ so that R′ = U ′MTS is upper triangular. (Practically
we only need to compute R).

A Flatter implementation in PARI

Step 5: Second recursion
Write R′ as

R′ =

 R′1
0 R′2 . . .
0 0 R′3


with R′2 of size [d/2] and R′1 of size [d/4]. Note that R′1, R′2 and
R′3 are upper triangular and R′1 and R′3 are already reduced.
Call recursively the algorithm to reduce a rescaled integral form
of R′2 to get an unimodular transformation matrix T ′2. Set T ′ to

T ′ =

 1 0 0
0 T ′2 0
0 0 1


and returns TST ′.

A Flatter implementation in PARI

The FLATTERGRAM algorithm (by Bill)

FLATTERGRAM is a variant of FLATTER for lattice given by an
integral Gram matrix G.

1. Apply the following reduction step until the matrix is close
to reduced:
1.1 Apply Cholesky algorithm using floating point arithmetic to

some precision to find M such that tMM = G.
1.2 Apply FLATTER to M to get an unimodular transformation

matrix T and replaces G by tTGT .

A Flatter implementation in PARI

The FLATTERKER algorithm (by Aurel)

FLATTERKER is a variant of FLATTER for matrices that are not
of maximal rank.
Do the following with i = 1,2, . . . until M is reduced.

1. apply FLATTER to
(

2iM
In

)
to get an unimodular

transformation matrix T and replace M by MT .

A Flatter implementation in PARI

Tuning

At each reduction step it is necessary to decide whether to use
fplll or FLATTER. We have different tuning for generic lattices
and knapsack. We currently use the spread for estimating the
cost of LLL. We should experiment with using the potential.

