Elliptic curves

Marine Rougnant

19/02/2024 - 23/02/2024

1 Riemman ζ function

Exercise 1.

- 1. Give the list of the 100 first coefficients of the Riemman ζ function.
- 2. Check that $\zeta(2) = \frac{\pi^2}{6}$.
- 3. Give the list of zeros z on the critical line with $0 \leqslant \Im(z) \leqslant 30$.
- 4. Use zeta to compute some values of the ζ -function. Compare with 1fun.
- 5. Create a function gammafactor(s) which returns the value of $\gamma_A(s) = \prod_i \Gamma_{\mathbb{R}}(s+a_i)$ (see gamma).
- 6. Check the functional equation on the Λ .

Exercise 2.

Numerically check Riemann's hypothesis (see ploth).

2 Dirichlet L-functions

Exercise 3.

Choose your favourite modulus m.

- 1. Give the structure of $(\mathbb{Z}/m\mathbb{Z})^*$.
- 2. Find a primitive character χ of G (see zncharconductor).
- 3. Create $L(s, \chi)$.
- 4. Check the following:
 - If χ is even, then $L(s,\chi)$ has simple zeros at $s=0,-2,-4,\ldots$
 - If χ is odd, then $L(s,\chi)$ has simple zeros at $s=-1,-3,-5\ldots$

3 L-function of an elliptic curve over a number field

Exercise 4. We define the elliptic curve $E: y^2 + xy + \phi x = x^3 + (\phi + 1)x^2 + x$ over the field $K = \mathbb{Q}(\sqrt{5})$ where $\phi = \frac{1+\sqrt{5}}{2}$.

- 1. Initialize the number field K, then the elliptic curve E.
- 2. Compute its j-invariant, discriminant, conductor and its torsion.
- 3. Check the BSD conjecture for E (see elltalmagama and E.omega).
- 4. Create L(E, s).
- 5. Check the functional equation : $\Lambda(E,s) = \varepsilon N^{1-s} \Lambda(E,2-s)$, where $\Gamma_{\mathbb{C}}(s) = 2(2\pi)^s \Gamma(s)$ and $\Lambda(E,s) := \Gamma_{\mathbb{C}}(s) L(E,s)$.