bnf = bnfinit(x^3-11); bnf.pol bnf.cyc bnf.reg bnf.fu bnf = bnfinit(x^3+1048583,1); sizebyte(bnf.fu) bnfunits(bnf) sizebyte(bnfunits(bnf)) bnfsignunit(bnf) bnf = bnfinit(x^3-17); bnfunits(bnf) bnfunits(bnf)[1] [0,1,1]~,-4;[2,-1,1]~,2],Mat([-1,1])] id = idealprimedec(bnf,2); bnfunits(bnf,id)[1] [[2,1,0]~,-1;[-2,1,0]~,1;[-1,1,0]~,2; [0,1,1]~,-4;[2,-1,1]~,2],Mat([-1,1])] quadclassunit(1-2^127) *** Bach constant: 1.3340686047266399061 Time factor base: 1 Time subFBquad = Vecsmall([2,11,13,17,23,31,37,41,61,67,73,79,83]): 0 Time powsubFBquad: 1 KC = 642, need 647 relations Time random rel [#rel/#test = 647/450475]: 7681 #### Tentative class number: 5737275303524805875 Time be honest: 340 quadclassunit(1-2^127) *** Bach constant: 1.3340686047266399061 Time factor base: 2 Time subFBquad = Vecsmall([2,11,13,17,23,31,37,41,61,67,73,79,83]): 0 Time powsubFBquad: 1 KC = 642, need 645 relations Time MPQS rel [#rel = 645]: 33 Time hnfadd: 1808 #### Tentative class number: 5737275303524805875 Time be honest: 0 [Qfb(10151,8649,4190256710187893599933191402717932)],1]? \g1bnf bnf = bnfinit(x^3+nextprime(2^72)); PREC = 256 Time nfinit & nfrootsof1: 2 Floating point bnf: R1 = 1, R2 = 1 D = 602120120360326824825289510212630173284571067 LIMC2 = 16275 Time computing Bach constant: 7 Time computing inverse of hR: 0 *** Bach constant: 1.5308321954873111981 bnf = bnfinit(a^2-a+50,1); bnf.cyc R = bnrclassfield(bnf)[1] + (-12*a + 6)*x^4 - 30*x^3 + (18*a - 9)*x^2 + 18*x + (-2*a + 1) [cond,bnr,subg] = rnfconductor(bnf,R); cond subg R2 = bnrclassfield(bnf,,2) + 244113*x^10 - 19818*x^8 - 3170*x^6 + 17427*x^4 - 3258*x^2 + 199 bnr = bnrinit(bnf,12); bnr.cyc [deg,r1,D] = bnrdisc(bnr); [deg,r1] D bnrclassfield(bnr) + (-294*a-3273)*x^4 + (-3*a-3852)*x^2 - 3, x^9 - 24*x^7 + (2*a-1)*x^6 + 495*x^5 + (-12*a+6)*x^4 - 30*x^3 + (18*a-9)*x^2 + 18*x + (-2*a+1)] bnrclassfield(bnr,,1) bnr = bnrinit(bnf,7) bnr.cyc bnrclassfield(bnr,3) \\elementary 3-subextension x^3 + (-1008*a - 651)*x + (-1103067*a - 8072813)] pr41 = idealprimedec(bnf,41)[1]; bnrisprincipal(bnr,pr41,0) bnr = bnrinit(bnf,[102709,43512;0,1]); bnr.cyc bnrclassfield(bnr,[9,3;0,1]) \\subgroup of index 9 bnf=bnfinit(a^2-217,1); bnf.cyc bnrinit(bnf,1).cyc bnrinit(bnf,[1,[1,1]]).cyc bnr = bnrinit(bnf,[102709,43512;0,1],,3); bnr.cyc; bnrclassfield(bnr) S = [s|s<-subgrouplist(bnr,,1)|matdet(s)==3]; bnrclassfield(bnr,S) bnrclassfield(bnr,S,1)