Teluhiko HILANO on Wed, 2 Aug 2000 11:29:44 +0900 |
[Date Prev] [Date Next] [Thread Prev] [Thread Next] [Date Index] [Thread Index]
Re:(BUG?) Erroneous I+R overflow in GP/PARI Version 2.0.18 (beta) |
> > This "overflow" looks like a bug to me. > > parisize = 4000000, primelimit = 500000 > ? exp(2*Pi*I*((9/2)/(3/35 + 3/35*I)))-1 > *** overflow in I+R > ? exp(2*Pi*I*((9/2)/(3/35 + 3/35*I))) > %1 = 0.0000000000000000000000000000 + > 4.263424501275723583926909456 E71*I I checked the following ? exp(2*Pi*I*((9/2)/(3/35+3/35*I)))-1.0 %3 = 0.0000000000000000000000000000 + 4.263424501275723583926909456 E71*I I agree you, because both real part are equal. It seems that this bug appears in calcurate the real part. I have changed the precision to 100 digits and have the following result ? exp(2*Pi*I*(105-105*I)/4) %1 = 0.0000000000000000000000000000 + 4.263424501275723583926909456 E71*I ? exp(2*Pi*I*(105-105*I)/4)-1 *** overflow in I+R ? exp(2*Pi*I*(105-105*I)/4)-1.0 %2 = 0.0000000000000000000000000000 + 4.263424501275723583926909456 E71*I ? default(realprecision,100) realprecision = 105 significant digits (100 digits displayed) ? exp(2*Pi*I*(105-105*I)/4)-1 %3 = -0.99999999999999999999999999999998810292859218243763 15778112806134582485529029689024016459308767990225 + 42634245012757235839269094622528336838340048084665 0532478826897906943814.1042587459518788730331359099*I ? exp(2*Pi*I*(105-105*I)/4)-1.0 %4 = -0.99999999999999999999999999999998810292859218243763 15778112806134582485529029689024016459308767990225 + 42634245012757235839269094622528336838340048084665 0532478826897906943814.1042587459518788730331359099*I ? %3-%4 %5 = 1.09003771 E-106 + 0.E-34*I The final result looks a little curious. ------------------------------------------------- Teluhiko HILANO(hilano@bekkoame.ne.jp) (hilano@gen.kanagawa-it.ac.jp) (RXF13157@nifty.ne.jp) ------------------------------------------