Karim Belabas on Thu, 20 Sep 2012 17:05:38 +0200


[Date Prev] [Date Next] [Thread Prev] [Thread Next] [Date Index] [Thread Index]

Re: polresultant disagrees with sage, maxima and magma


It should have worked, and this was a bug in PARI. All such examples should be
fixed in master HEAD after the following commit:

  commit 7079c4f7813c582949dea92a3089bf6a6c532738
  Author: Karim Belabas <Karim.Belabas@math.u-bordeaux1.fr>
  Date:   Thu Sep 20 16:23:33 2012 +0200

      fix: resultant(x,x,y) -> 0 and related problems
      
      Original bug report:
        p1=x2*(x3-x4);p2=x2*(x3-2*x4);polresultant(p1,p2,x1) -> 0. Should be 1

Thanks for your report !

  K.B.

* Georgi Guninski [2012-09-20 15:35]:
> parisize = 8000000, primelimit = 500509
> ? q1=x2;q2=x2;polresultant(q1,q2,x1)
> %1 = 0
> ? q1=x2;q2=x2;polresultant(q1,q2,x1)
> %2 = 0
> ? p1=y;p2=y;polresultant(p1,p2,x1)
> %3 = 1
> 
> 
> On Thu, Sep 20, 2012 at 04:09:07PM +0300, Georgi Guninski wrote:
> > I don't claim this is a bug in pari, more like a bug in the
> > mentioned CAS.
> > 
> > ? p1=x2*(x3-x4);p2=x2*(x3-2*x4);polresultant(p1,p2,x1)
> > %1 = 0
> > 
> > Since p1 and p2 certainly have common roots I expect the resultant
> > w.r.t. x1 (not present in p1 or p2) to be able to vanish.
> > 
> > sage, maxima and magma return $1$ on the above testcase.
> > 
> > Can't see how it can be both ways, which is correct?
-- 
Karim Belabas, IMB (UMR 5251)  Tel: (+33) (0)5 40 00 26 17
Universite Bordeaux 1          Fax: (+33) (0)5 40 00 69 50
351, cours de la Liberation    http://www.math.u-bordeaux1.fr/~belabas/
F-33405 Talence (France)       http://pari.math.u-bordeaux1.fr/  [PARI/GP]
`