A matter of definition.

R. J. Cano*
December 6, 2013

Abstract

An alternative approach to the arithmetical definition of binomial
coefficient. Useful for both purposes, the calculation of (Z) and the
generation/enumeration of combinations in lexical order.

Contents

[1 Yes!, a matter of definition.| 2

TN ood ofni i T cociCen 5 < 2

2 Playing a little with cubic blocks and |

| elementary Algebral 3
[2.1 Mathematical expressions are not cubic blocks but fun 1s al- |
[lowed therel 3
2.2 Definitiono 5
2.3 Example|o 6
(2.4 Enumerating combinations in lexical ascending order| 7
2.5 Example:] 7
[3 Simplifying the recurrence relations| 8
[4 Proof for k£ = 2 of equation 3| 9

*Undergraduate student of Physics at Universidad de los Andes. Mérida, Venezuela.
e-mail: remyQula.ve;

1 Yes!, a matter of definition.

1.1 The standard definition of binomial coefficient in
combinatorics

In general, for n > 0 and 0 < k < n; by definition:

Cin k)= [[n—k+1) 1)

And the possible extension for negative integers won’t be treated here.

Starting from this definition, and by interpretative observations about
simple geometrical constructions made using cubes, constructions like pyra-
mids and another “shapes” for counting its blocks as the numbers of the form
(”), we might propose alternative ways of calculation trying to change the

k
standard definition given above.

m=7

C(m,2)=21

For example, there in the picture it is strongly suggested the use of a
double sum for the computation of binomial coefficients of the form (72‘)
It is clearly not the fastest way to perform such kind of calculations and
where the speed is important, the standard definition or expr. (1) is enough.
However, one might be also interested in the generation of the so called binary
combinations, and particularly in the enumeration of combinations in lexical
ascending or lexical descending order.

2 Playing a little with cubic blocks and
elementary Algebra

2.1 Mathematical expressions are not cubic blocks but
fun is allowed there

There are no precise recipes, methods or guidelines to follow when a human
is using the imagination and the creativity. Just by inspiration and of course
based on the described pyramids and “shapes” the following non-conventional
treatment might be found out:

Let imagine the reader a worksession with some CAS ﬂEﬂ software with a
similar syntax to PARI—GPH

k
1 .
C(nak‘)ZEH(n—kJrJ);
L

rhs (%) ;

k
1H .
'j=1

1
subst (*, ik 1) :

k
—>H(n—k+j)
subst <*,H,Z>7
—>§:(n—k‘+j)

LCAS = “Computer Algebra System”

Where it is used: “rhs(E)” standing for the right-hand side, where “E” is some equality
expression. Also “subst(P,Q,S)” assumed to be: “In the compound expression P, replace
the expression Q by the expression S”. It is used a “x” denoting: the last result (an
expression), and an arrow preceding some expression means that it is a result replied by
the system.

subst (x, —k, +a) ;

k
—>Z n—l—oz—i—]
7j=1

subst (x,k, 3) ;
8

—>Z(n+a—l—j)

=1
swap (x, B, (n+a+j));

(n+a+j)

H25

(n+a+j)

swap | *, Z B

J=1

(n+a+j)

Hﬁz

subst (%, J, ;) ;
(n+a+j)

—p3 >

=1
subst (x,1,¢;_1) + 1) ;

(n+a+j)

-5 >

Y= -1+l
subst (x, +a, —k) ;

(n—k+7)

DY
Yi=p-1+1

(n—k+j)

ﬁﬁz

Yi=vi-ntl

k
subst (*, 0, H) :
=1

(n—k+j)
NIl
J=1¢=;_1)+1
And it is noteworthy the fact that, at least in this case, all these symbolic
transformations made with the aid of an hypothetical CAS software, are
neither arbitrary nor random. All of this come to be intuitively inspired by

geometrical constructions like the picture shown previously in representation
of (}) = 2L.

Well, according to our worksession, it might be possible and correct to

state:
(n—k+3)

I x
J=1v¢j=vg_1+1

But: Let us wait a moment!. What is the precise meaning of the right-
hand side in such expression?.

In order to answer this question, it might be instructive to re-write our

proposal as:
(n—k+j)

R I INE (2)
J=1Y;=v;_1)+1

reading it’s right-hand side as an operator applied to the unit.

2.2 Definition.

Going back to the worksession we remember that there is no actually any
product, since we replaced [with >_. Just for such reason, it might be called
(Why Not?) a “pseudo-product”. Then the so coined “pseudo-product” is
actually a multiple summation where the lower indices, the upper indices or
both kind of indices are not all independent because there exists a recurrence
relation among them.

2.3 Example.

For the particular study case of our current interest: An alternative definition
for () the lower indices are in monotonic linear recurrence while each upper
index is a difference, relative to n and k. Since all what was mentioned is
temporarily just an hypothesis, let us try to give justice to the picture in
representation of (;) = 21 by performing such calculation with a “pseudo-
product”. By direct substitution in (2), we have (the semicolons are present
there for readability):

2 (7—2+47)
cr2) =} > 1
J=1j=v;_1)+1
(5+4)
S Y b
J=1y;=v;_1)+1
(5+1) (5+2)

S D MR

P1=Y_1)+1 Y2=v(2_1)+1

6 7
> > h
Y1=1po+1; Ya=1p1+1
And the job hangs up due a subtle detail: 1) is unknown. Since it is not
a surprise that correctly stated recurrence relations always include one or
more initial conditions, and for simplicity 1y could be defined as an arbitrary
constant. Then[f]: (1 = 0)

w,z):{i 5 }1

P1=1; Ya=p1+1

(reyeyeyeyay b

Po=141 1Pp=2+1 1ho=3+1 441 ape=5+1 po=6+1

3The particular structure of “pseudo-product” proposed as replacement for the stan-
dard def. of (Z) in some sense generalizes the process of counting the number of k-ary
combinations that can be made from n elements (The blue blocks in the picture for our
example).

2.4 Enumerating combinations in lexical ascending or-
der

Based on the expression (2), a computer program where the summation is
replaced with a for loop or any similar iterative structure, will be able to
print a list in ascending order, consisting in all the possible combinations
without repetitions that can be made from n things placing them in groups
of k elements each time. All what the program should do is to run the
multiple loop printing each time the set of values for the indices 1; in the
same order that these indices appears in the formula. This same principle
might be used for any other kind of enumeration (not only integer numbers)
where the idea of k-ary combinations is involved.

2.5 Example:

In PARI- GPH, the following function perform such kind of task:
list_ nC2 (x)=for(psil=1,x—1,

print(”u”);
for (psi2=psil +1,x,
printl (”_(”,psil ,”,” ,psi2,”);")

)
);

When it is called for x = 7, the resulting output is:
? list . nC2(7)

(1,2); (1,3); (1,4); (1,5); (1,6); (1,7);
(2,3); (2,4); (2,5); (2,6); (2,7);
(3,4); (3,5); (3,6); (3,7);

(4,5); (4,6); (4,7);

(5,6); (5,7);

(6,7);

And there are possible modifications to such code that enables us to
change the order for one or both components in these pairs.

4Note: The source code shown here was splited for readability, however when it is
inserted inside a PARI-GP active session, the user should enter it without the white
spaces in order to work.

3 Simplifying the recurrence relations

An inversion applied to both limits in the loops over another way of writing
the recurrence relations,

rev_list_ nC2(x)=forstep (psil=x,1,-1,

print (77 u”);
forstep (psi2=psil —1,1,—1,

pl"lntl (?7u<77 7pSi]. ,77 ”7 ,pSi2 777);77>
)

)
produces the following output:

? rev_list_.nC2(7)

(7,6); (7.,5); (7,4); (7.3); (7,2); (7,1);
(6,5); (6,4); (6,3); (6,2); (6,1);
(5,4); (5,3); (5,2); (5,1);

(4,3); (4,2); (4,1);

(3,2); (3,1);

(2,1);

Where all the items are shown in lexical descending order. The corres-
ponding summation formula associated to this other sourcecode is:

k YG-n-l

Cink) =< Y. 1 (3)

=1 =1

Where this time the proper initial contidition is: ¥y =n + 1.

A full proof for this kind of “pseudo-product” when k = 2, will be found
at the end of the present work.

4 Proof for k =2 of equation 3

The general structure for the identity in the expression 3, was found empir-
ically while solving another problem in Mathematical Physics about certain
invariance and autosimilarity present in the Newton’s second law after it is
generalised to any temporal derivative of the position taken as dependence
of the potential energy. Here is what was written originally.

(B-1)
)DRE DD DN EA TPV
1=>=0 p=0 A=p+1
v=(B-1

v (v=1) v

—b=— Y+ > £

1=X=0 p=0 A=p+1

B B

(6-1)

p=X=0 p=0 A=p+1

B B-1) B 8l -1 v
R R DR D DN E{ZPVEN ISR DI S E{IZP)
p=>=0 =0 A=p+1 =X>=0 p=0 A=p+1
B B-1) B gl (-1 v
PR B SRS 3 ol B 5 SES ol ol I LI
p=X=0 u=0 A=p+1 p=>=0 p=0 A=p+1

~
=0 A=

(v=1)

o

B
=0 A=p+1

(B-1)

I

[s

pt1

p=>=0

[s

~
=0 A=

(v=1)
%

=0 A

(B-1)

w

o~

putl

1=x>=0 =X=0

SRS IR IED 3L o o LAY

SIPOED IS b S 91 ol %3

=<
= 3
~ Sy
S
| 3 o
AL
TWT T
| ; npw>_m
e BEAT
TN
@mm 2t
=N NG
__nH WWL
g
L

|

£ (u, A)
0 A=p+1

B ((B-1]-1) [-1]
PEDID I D

w=X=p

"

=0 A

(B-1)

I

B

f(p,)
p=0 A=p+1

B ((b-1]-1) [6-1]
SEDID I D

p=X=0

=0 A

(B-1)

1

B

Ad =

=
=
e
1
—
= +
YN
o [l
\A
T3
WZM
|
—
A__v
SN
\A
T3
WZM
l_l
Q.
SNE:
ALY

~
\A
=
N—
[y
1
—
= +
IAE
Aol |
\A
T
w 3
_
—
A_v
SNE
\A
1
— —
— |
| Q.
Q I
3
l_l
T3
w 3
| — |
|_|
Q.
~[%
| — |

f (M)
0 A=p+1

(8-2) [-1]

Y Y YT Y Y Y

p=X=0

W

5
51 A=

B
=0 A=p+1 o

(8-2)
o

B

|

£ (u, A)

Ll
+
= N T
~\: = =
N o > -~
3
SE/N N =
=7 — =
L B L
pal Q. [y
ﬂz__ BZ: ﬁz__
< < <
— — — —
= | = e
AR LN
= =L I
+ + ~ 3
Q. Q
SN
~< ~< ™ (=
e %Zn__v AL
(B\ 3 w 3 -
+ + +
— Q
|
o] L L
I — |

[Zﬁ:—k(ﬁz:l)/\zﬁ:

p=x=p =0 A=p

} £ (u, A)

=

(B-1)

=£(8,8)+ > _ (10

=0

=

8 B (¢-1)
dYae)=>" {f«,o +) f<u,<>] = (5)

¢=0 ¢=0 n=0

Note:
The following convention was adopted: If w < a then >y (---) = 0; the
dots means any expression enclosed by such sum.

Jé] 8 (¢-1)
OB =D FCO+D. > f(uC)
¢=0 (=0 p=0

From there: When it is defined f (u,w) = 1 for every pair (u, w), it can
be stated that:

511 g (z—1) B-1) B
())—ZZf(y,x)—Z waa)\)
z=0 y=0 p=0 A=p+1

11

	Yes!, a matter of definition.
	The standard definition of binomial coefficient in combinatorics

	Playing a little with cubic blocks and elementary Algebra
	Mathematical expressions are not cubic blocks but fun is allowed there
	Definition.
	Example.
	Enumerating combinations in lexical ascending order
	Example:

	Simplifying the recurrence relations
	Proof for k=2 of equation 3

