Bill Allombert on Thu, 18 Sep 2014 16:06:11 +0200 |
[Date Prev] [Date Next] [Thread Prev] [Thread Next] [Date Index] [Thread Index]
hyperelliptic curve zeta function |
Dear PARI developers, I have added a GP function to compute the Zeta function of an hyperelliptic curve over a finite field (with some limitation), following Gaury-Gürel version of Kedlaya algorithm. The function actually return the characteristic polynomial of the Frobenius. Some examples: The elliptic curve y^2=x^3+x over GF(101) ? hyperellzeta((x^3+x)*Mod(1,101)) %1 = x^2-2*x+101 ? ellap(ellinit([1,0]),101) %2 = 2 The curve y^2=x^5+g*x^3+2*x+5 over GF(79^3), where g is a root of x^3+x^2-2*x-1: ? g=ffgen(ffinit(79,3),'g); ? hyperellzeta(x^5+g*x^3+2*x+5) %5 = x^4+819*x^3+945075*x^2+403798941*x+243087455521 Cheers, Bill.