Bill Allombert on Sat, 16 Jul 2016 20:04:20 +0200 |
[Date Prev] [Date Next] [Thread Prev] [Thread Next] [Date Index] [Thread Index]
Re: Support for elliptic curves over number fields |
On Sat, Jul 16, 2016 at 06:06:55PM +0200, Bill Allombert wrote: > Dear PARI developers, > > We have added basic support for elliptic curves over number fields and L > function of elliptic curves over number fields. > > This is an example: > > ? N=nfinit(a^3-26); > ? E=ellinit([a,0,1,0,0],N); > ? lfun(E,1) > %4 = 0.24961216776576924744553489082015201012 For thus who are interested, the following script checks the Birch and Swinnerton-Dyer conjecture for rank-0 curves. ? N=nfinit(a^3-26); ? E=ellinit([a,0,1,0,0],N); ? bsd(E) %3 = 0.99999999999999999999999999999999999999 (I do not know how to compute the height of points for rank-1 curves.) Cheers, Bill.
per(E)= { factorback([if(1,my(e=ellinit(subst(lift(E[1..5]),a,z))); if(imag(z),e.area,e.omega[1]))|z<-E.nf.roots]) } tam(E)= { my(F=idealfactor(E.nf,E.disc)[,1]); factorback(vector(#F,i,elllocalred(E,F[i])[4])); } tamoo(E)= { factorback([if(1,if(imag(r)==0 && subst(lift(E.disc),'a,r) < 0,1,2))|r<-E.nf.roots]); } bsd(E,k=0)= { L=lfuncreate(E); om = per(E); too=tamoo(E); bs = om*tam(E)*too/elltors(E)[1]^2/sqrt(abs(E.nf.disc)); lfun(L,1,k)/bs }