| Georgi Guninski on Fri, 29 Nov 2019 10:45:45 +0100 |
[Date Prev] [Date Next] [Thread Prev] [Thread Next] [Date Index] [Thread Index]
| Re: Solving x^2+n*y^2=a without factoring positive $n$? |
On Thu, Nov 28, 2019 at 6:35 PM Bill Allombert <Bill.Allombert@math.u-bordeaux.fr> wrote: > > > With PARI 2.12, you should use qfbsolve(Qfb(1,0,n),a) which will run in > quadratic time in n (assuming n>0), given the factorisation of a. > There is no need to factor n. > Do you really mean quadratic in n? If n is over 2^100 this will be infeasible and bruteforce is time sqrt(a). FYI in 2.11.1 on debian 10 (and pari online): ? p=nextprime(2^150);q=nextprime(3*p);n=p*q;a=(p-1)^2+n*sqrtint(q-200)^2;K= thue(thueinit(x^2+n,1),a) *** at top-level: ...)^2+n*sqrtint(q-200)^2;K=thue(thueinit(x^2+n,1 *** ^--------------------- *** thue: overflow in thue (SmallSols): y <= 65435029442324541857792. *** Break loop: type 'break' to go back to GP prompt