Georgi Guninski on Wed, 28 Apr 2021 12:54:16 +0200
|
[Date Prev] [Date Next] [Thread Prev] [Thread Next] [Date Index] [Thread Index]
Re: Finding n mod p^(D-1) given A=g^n mod p^D
|
- To: pari-dev@pari.math.u-bordeaux.fr
- Subject: Re: Finding n mod p^(D-1) given A=g^n mod p^D
- From: Georgi Guninski <gguninski@gmail.com>
- Date: Wed, 28 Apr 2021 13:54:01 +0300
- Delivery-date: Wed, 28 Apr 2021 12:54:16 +0200
- Dkim-signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=gmail.com; s=20161025; h=mime-version:references:in-reply-to:from:date:message-id:subject:to; bh=ligphatB616csgQnU8CP9e+kdtcVKmQnkcC2RoCu4p8=; b=BsSULVW8rQMsDCdgQyWLFMeCRXsB3jsLv3Sv1YIpPL0OE4Aw9nv/PxdDddGFCQ86pI O4gLmqecc6kC9ThY5o2qgUQDkgn2F6Yth4Ey09OQhTyXVOH9Tw2hAqM92ip0Ex9RdJPU B+JNKnHBVElbmToqJwTS26PcFxjsfzN0IDwWC/EHnkl2a4T++0DDBaJIqY3/UMBgP3ka T7p8LimukuUgzV6qbG76mjAhVccAX4SVbOoQrGSa7N8UUQciY4j/5iacEfxWpXRDy7kw c7gGh19KQ2IMfwikVC4mW7QyxV5I2VJ7E4xXGqqGtfOWz0ZYb9NG9yeyeMDkVfK+2sx5 k0jg==
- In-reply-to: <20210427094643.GK28990@yellowpig>
- References: <CAGUWgD_csG_uTk22zETWQdnauimGb8o+xemrggWbYcvEUVcX6Q@mail.gmail.com> <20210427094643.GK28990@yellowpig>
On Tue, Apr 27, 2021 at 12:56 PM Bill Allombert
<Bill.Allombert@math.u-bordeaux.fr> wrote:
> >
> > Conjecture 1: dlog(p,g,A,D) mod p^(D-1) = n mod p^(D-1)
>
> Your function is not defined for all (p,g,A,D).
> Otherwise this follows from the definition of the Iwasawa logarithm.
>
Thanks for the answer.
We believe there are few counterexamples to the congruence
if g is p-th power and dlog is successfully computed by pari:
? p=113;D=3;X0=(p+2);g=Mod(2,p^D)^p;A=g^X0;X1=dlog1(p,g,A,D);
? [((X1-X0)%p^(D-1)==0),((X1-X0)%p^(D-2)==0)]
%13 = [0, 1]