Bill Allombert on Thu, 26 Oct 2023 14:18:53 +0200
|
[Date Prev] [Date Next] [Thread Prev] [Thread Next] [Date Index] [Thread Index]
- To: pari-dev@pari.math.u-bordeaux.fr
- Subject: Re: polgalois
- From: Bill Allombert <Bill.Allombert@math.u-bordeaux.fr>
- Date: Thu, 26 Oct 2023 14:18:42 +0200
- Arc-authentication-results: i=1; smail; arc=none
- Arc-message-signature: i=1; a=rsa-sha256; d=math.u-bordeaux.fr; s=openarc; t=1698322726; c=relaxed/relaxed; bh=vtJY1bwzwdOCCYmTFCyPfwVRp485caXLzp3vpaBp0PA=; h=DKIM-Signature:Date:From:To:Subject:Message-ID:Mail-Followup-To: References:MIME-Version:Content-Type:Content-Disposition: Content-Transfer-Encoding:In-Reply-To; b=Tu5UfFwQ60hnkZhtUUriSECql/5Ga4dnX0toN56f3LTlSex6CsJvk1R/lVqfPzVhp1i6UflgUtBFBjery5OdKnedFYfclLjJHQNsSZmixjDqgG6oApD3t/TMOQW4Y3+geE0jUITi9OHiZ1f/nb/N2is/BQ4fRbCPz4ORX4EEtbrcUI34R03xp+exdFYKjFSUmxACqfmGb3ItURlrps3uXupPrHBe/5UWiXiWLip874tHYG1YZRQuEbVhB64aYtcWrjNQYGpJNAA+v4416jXsYrp4WlFBSZoqIA7znFt3GyKgLIqyTT3dFOpsxLOtkj/pcoHh0qfR2K5NTMCSGfP3vKdgDX2GnUdtqjdQU0DFeh4FuWxagRoFmvwwbX4+DGF9ctYCsJFKd/OqHGRiOXtkpV1ogphMJMUE/dha8KB9UEozVN/AEgWBiTn+hnzcrebedlmAQRCMpWNbZmG2DXxtQlwOGRauAUdHWE7ni8vf4e56QUsmTVXGnANAd+r1/Kk94otm6Jpv6YAP7JQ/p5G2UHb0CKhK3+Ze0hGArD41MfYHgJ+AeIt78qBzicRjoHCC/R7yPhaFEdE4b93MqwBn70SYEAdB2cCJrMYsZCwcbr/mW3AZwAQgYq0Ubs9ec18hysHfu2Bkmeex1c8UKTK8V5XUkijmsz5dz81xsafX0kk=
- Arc-seal: i=1; a=rsa-sha256; d=math.u-bordeaux.fr; s=openarc; t=1698322726; cv=none; b=1OmVvyv+UYy44DHBA5w2p3pxaVJcL2i9wHdiixVmpk5ZH7CTxAOmTeilbbTL/tsiNN6NqSantUGk/odRVYZhq9+K+iZp0uDWYL5z1f425U/kTdiWMqGuNg4diY1IWTe7N40kSedidGlVY44kBRbkbNZQoFzxvjJN0UdhrKpjwnmtRr8wdAyeRV4Z26vEgyFf8yR97XTISZHEDorOFllPG3ND/OrbbJgS5oN2AOOj6FmdWY2Qptoi0Qr81Lg2nnV4YMFKZYe99hQeyXFJjLt/QLDqkGj7CJ2ofV18Fb+y1Qq+azXPrExEpkE73dT62HUNR117qjey/iPmPFtHmJU6ArcLyeekLH9Z3NWpBW93NRmxJDkxjsOTQV1COcAVsvFXfIIZo5DZWFaXTckqUbxR8XtF5KeI/0aMmtGB2vzLlRXmmLlIkrmtIQKmtn+j8s/+8CQlG2ulIIr5ZB3ZOFA6+jpL3KUN+nxINY/yEtqJLMPBjO66oXW8LR9BFoaMmk9t1ZMcz4No7w4pQKOBF3eKsacF6DxD2cO728Dxzx5Q81LW3BmEMf/XVqDP3AmHYToLhRmXJGI5Slp5s5NR5OYe5p3+TdGEEWGVE9EgiN3z5o7Fpbo3xHUoIphghM74zI0nZD4O8spm1vDfh9TvyDXTvB+lWJupIyVLdNOKVygFyyQ=
- Authentication-results: smail; dmarc=none header.from=math.u-bordeaux.fr
- Authentication-results: smail; arc=none
- Delivery-date: Thu, 26 Oct 2023 14:18:53 +0200
- Dkim-signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=math.u-bordeaux.fr; s=2022; t=1698322726; bh=vtJY1bwzwdOCCYmTFCyPfwVRp485caXLzp3vpaBp0PA=; h=Date:From:To:Subject:References:In-Reply-To:From; b=sIQhgDLoJQyTOhsLqCoGqJjRrMeA9nbcaNvJ+TOJVL4zOJOODjr3PsqKnq5poV3mL XP0lrsKnXSFqV/b1pMreHu7i5eolURbVZ8xhz1UzoQMx5mvO+ATtqQpULu1fn7z/9w b6TAto6oEggGicvzWXL4E2mEPdV27n6A8TlU1SfM/FRd+6aY1NmrdpVLB7L0PoiM7g JAnM3Rswnu2Su1a4zikjrbYblh17tc6ACJ/zcAW3e+J46opI5/h4+dVu+OWkw28Xf9 7n9j+zFiM8l4hJyPK/iP2Ej7YZlUbkfO+PKr7zc8fZ7UmWRc9TXB/u9pdnv459ygSi gd8rTvVKdeeTh5gBeAy4nOq7LWOc7BDr4/b2zQraQKxCXRCWVxUILQUPQZlDuHuwr7 UzzgfF9/D6gRNK5BQsJNo1fv30prwxhqx1daxKPRnZ0N3zIzW/bvIQRNA2I2C2z3HH X5lCYKFiy2O6iIn1plh3SpOhDoA2nTMJWAUZZh9k+yVcYFIDEo2EG5l4oOyjOhNUE4 ZDHbclPowIDsMkMtFUthWCEMGDAkFXT4a4ZMpveniP0O9m6PxrdEtKLbBrHcSi5tFN WFUfRQUF1SRA7ezYZntqwxL4lJ3N5aEeJuLWlYdYpY6AdlMSGh++UOOgvzff+qBn+Y pY9vJKMM7y2ndRWc3pJkO+C4=
- In-reply-to: <CAM=NMZJjzMwov8HFi+mkscsN+VeWtwgXoS52tcWJBfrGPawvkw@mail.gmail.com>
- Mail-followup-to: pari-dev@pari.math.u-bordeaux.fr
- References: <CAM=NMZLHBnXSMeXTX+8Dyg+A64V-ZQNuunMh5+YSXA_M8QVMuA@mail.gmail.com> <ZTofkrrW0AXW+tt0@seventeen> <CAM=NMZJjzMwov8HFi+mkscsN+VeWtwgXoS52tcWJBfrGPawvkw@mail.gmail.com>
On Thu, Oct 26, 2023 at 11:40:59AM +0200, Harald Borner wrote:
> Cher Bill,
>
> merci bcp. pour ta réponse rapido!!
>
> -> For groups of small order (says <=1000), one option is
> galoissplittinginit
> which computes the Galois group of the splitting field of the polynomial.
>
> This would be fantastic! more than enough for what we need.
> When you say "the" splitting field, I guess you mean not just any such, but
> the smallest possible.
> What is the difference then to what polgalois returns, if not the Gal grp.
> of a/the smallest splitting field?
> (just came back from Nepal, so I have to get my mind back into the nitty
> gritty of Galois theory.. ;-)
For your example, you can do this:
? G=galoissplittinginit(x^12+3);
? #G.group
%2 = 24
? galoisidentify(G)
%3 = [24,8]
? galoisexport(G)
%4 = "Group((1, 11, 10, 24, 14, 15)(2, 22, 21, 23, 3, 4)(5, 17, 12, 20, 8, 13)(6, 16, 7, 19, 9, 18), (1, 6, 24, 19)(2, 17, 23, 8)(3, 20, 22, 5)(4, 12, 21, 13)(7, 11, 18, 14)(9, 15, 16, 10), (1, 2, 10, 21, 14, 3)(4, 11, 22, 24, 23, 15)(5, 7, 12, 9, 8, 6)(13, 16, 17, 19, 20, 18))"
%2 tells you the group has 24 elements.
%3 tells you the group is isomorphic as an abstract group to SmallGroup(24,8)
%4 gives you the associated permutation group in GAP syntax.
Note: PARI galoisidentify only works for groups of order <=127, because going further require huge tables.
Then in GAP you can do
gap> G:=Group((1, 11, 10, 24, 14, 15)(2, 22, 21, 23, 3, 4)(5, 17, 12, 20, 8, 13)(6, 16, 7, 19, 9, 18), (1, 6, 24, 19)(2, 17, 23, 8)(3, 20, 22, 5)(4, 12, 21, 13)(7, 11, 18, 14)(9, 15, 16, 10), (1, 2, 10, 21, 14, 3)(4, 11, 22, 24, 23, 15)(5, 7, 12, 9, 8, 6)(13, 16, 17, 19, 20, 18));
gap> TransitiveIdentification(G);
14
gap> IdGroup(G);
[ 24, 8 ]
gap> TransitiveGroup(12,14);
D(4)[x]C(3)
So your group is D(4)[x]C(3)
Cheers,
Bill
- References:
- polgalois
- From: Harald Borner <harald.mtac.borner@gmail.com>
- Re: polgalois
- From: Bill Allombert <Bill.Allombert@math.u-bordeaux.fr>
- Re: polgalois
- From: Harald Borner <harald.mtac.borner@gmail.com>