Bill Allombert on Sun, 14 Jan 2024 12:49:53 +0100
|
[Date Prev] [Date Next] [Thread Prev] [Thread Next] [Date Index] [Thread Index]
Re: Implementation of forprime() and unextprime()
|
- To: pari-dev@pari.math.u-bordeaux.fr
- Subject: Re: Implementation of forprime() and unextprime()
- From: Bill Allombert <Bill.Allombert@math.u-bordeaux.fr>
- Date: Sun, 14 Jan 2024 12:49:49 +0100
- Arc-authentication-results: i=1; smail; arc=none
- Arc-message-signature: i=1; a=rsa-sha256; d=math.u-bordeaux.fr; s=openarc; t=1705232991; c=relaxed/relaxed; bh=w5BLz9k7y0JerQ5e/tRXBQUnrbeXRRLButlAiMWrmFM=; h=DKIM-Signature:Date:From:To:Subject:Message-ID:Mail-Followup-To: References:MIME-Version:Content-Type:Content-Disposition: Content-Transfer-Encoding:In-Reply-To; b=ZDltBPxlfZUTpFId6A1eCvinumRVFFviL/uH+GzsgKNA36N8ho2aBaVTeJKnYCxd9jukJTZkDVUiT/psrkHkaLhWysxh2HHcO7Ds2s+roVV+tdjGZBPNAebvTd9Oqos2EA64bAOSNS8+YYsWEbS6cVF8NqMbQtLuHitGtSRcnjxc0c/1MxmrhcnnEF7HBvxQiw6ChcEZW/KZYRzILH6ns4S/t1BYUucm8zG4WprccFHNF0vDg1micxR5Zuyf7Iz3GsIDdmWJN54AtlnKrviprDLwS7pBQTWmjqhNeHrx+ZTqHVGzPJ8yX/OpOONxaY7HIKcsYS4ilZ53xqoiGjjV02GkfKY9B6T8oJ28gbB4PJanBDSJizYelKPh9h4JULXm+M73AUjmTAq2fjgL306DZyh60IR5Vph3hzywjdCfvSrvK/EWoc5r8Hyf4bjZAcZsh2IJMW2DApsDUGGdafN6FHIc84S9+gpSQ0fUqWeIxQHkKtr41cpSG135v1Pub7Bu+s1rP9/slrDr2T5SHv82FMeuUCUkxpG0HN4QJAVgMe/zQZlCO7rZ2Y9VDToWv+PrZFDj4nZyaqoMnF8ExB74EgKiDbC1rRkACn+CKCet2YWg9OVDe7zzk5/1hmWyAF6ZpAlgsq8jW5FKgxk6rtRkUgYIQ2Fdt2ZMLc+o9RJ3JWM=
- Arc-seal: i=1; a=rsa-sha256; d=math.u-bordeaux.fr; s=openarc; t=1705232991; cv=none; b=Ed6dMt8D9bLvMsvvE86+68raY6Rf2sgYtdSR2Vt1jhrnw7Y8MbyOY8mMd0Au7sk2qyLJt8bJllbyraIr4rs5GQXhRV9TLsQq96FHuK+NX3xHr2rJl1XOCmdgthIGKdy6eRuaw43v0a2581gi60yNOSITuJN/9u6X+E4kk9fOXwU3bVIfYHADvVlr0S+Zju0XBieRHhNnNBeDzuMVC/Wdi5XU13RZEQTAsbGcq9EPycd7PZrPUq50R6JErJ6Q1jvQtfu75SRUuIbpVEws60kF89XmJgipFecyIZjRarSrQsM+JBEqc4H9KZG1x+hUEZOEjwdR9gDFUrTNnAe0AKAI0NjA8nJCTI0LqYRXhbDlXtn4KYwOQfgCAVS2qPkTZGv7x4ffAq6Vtm8BDwaXXEyoMao6sSOWikSfAwAkPpzE2uxGIN8Fsp8gI6cW1zF5zaGwF9KgtOSBIFmJwAQWbOS54y219UDTn1FvQKHaIr4rp+u2mK0sfUArMVBblFArMqGj+5YDlC+I6wiOBFnhD8Mqq7J5vxuobcQkmHnZikryuk8NZ0VPi9ikSUQZBtnlALBmjBRAmb6jWDdNp+BMxSf2d/eVsYoV+b7o+W/80I/Dv6+iJn79sf7mbde+9IU8scZ+feE/LR4LWJaxU+uPuyPkZ5VD0J4qOOJZzW3hTpkQgec=
- Authentication-results: smail; arc=none
- Delivery-date: Sun, 14 Jan 2024 12:49:54 +0100
- Dkim-signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=math.u-bordeaux.fr; s=2022; t=1705232991; bh=w5BLz9k7y0JerQ5e/tRXBQUnrbeXRRLButlAiMWrmFM=; h=Date:From:To:Subject:References:In-Reply-To:From; b=fIMNVgWzYRHF1OnyZIwolMZA3fPooUEsySHPZ23y04sf4Kyw+iLeoO1IemHmFRPGZ 1+J8wvsojdKw9IELA1GUQHOvW1xytTKQaihu3xMvpscWgjPNrwVLHNME71ujNA1Vsh 52J8Z4Iz99yzt/lOHhliu5KFweUz74fvc2kyDESFKKO0nhU9I3z376ADsGJF3cgQV1 CrXZvgA96ZSMn+OLh/CEDuUGQIbIfm5+3fmjAkaJ604rTV64jpeDsRAcqvqFy1cSvT 4Qon8Gg5Jk/I4woQsEGmqGAjXy/m36oBACjDNlQwKA7X+rU+rz5JA7wcBjo9VOyYGZ xjpyWr54owDhygd6b5LgvAfcAv27xMYA73OTAFtIQ8Vhd6NZ1Xz1qjZv6HQhiqgq9g Xht2Z1PV86axTsQuWANOpqMzGqrWU2pQyPsKaHmZxMI9zLXmm8x2TVMyccUrkiffAl Oa1z7vSAu3cTM52VVaUVr4s05mLQp4Jz63YTA5s4GlJ5nb7I78voC/DEMgk/RHVVHV imxJHWQzybN4wuRtdADpjiP+GfxjSK7DiwkXq2xYKm/nd6MVIhtdIsuAzytz+ITNoI kce+788/xiCnXe+RRFz4CS9Sxl+A8UMbmi8rtl+WjddUVeu2eSXr6O0gaW1zeotByD RLViy0nF2L/RV72+swEztn64=
- In-reply-to: <ZaJ149k4sMPufjKh@login.math.berkeley.edu>
- Mail-followup-to: pari-dev@pari.math.u-bordeaux.fr
- References: <ZaCtf8u8D+gSGbj+@login.math.berkeley.edu> <ZaHE4FFwcLv58W+8@seventeen> <ZaJbx6DfYdzAFYCh@login.math.berkeley.edu> <ZaJu1qMMlk359/VL@seventeen> <ZaJ149k4sMPufjKh@login.math.berkeley.edu>
On Sat, Jan 13, 2024 at 03:37:07AM -0800, Ilya Zakharevich wrote:
> > > This remark is also a tiny bit pointless without giving the HTTP url
> > > to browse… ⅞ ;―]
> >
> > I was quite sure you could find it yourself.
>
> … And I was quite sure you can use my analysis of an older code!
But then why should we both waste time on old code ?
> > Yes, we store the product of all primes < 2^i for all i less than 20,
> > which we can then use for sieving (for factor(,0))
> >
> > ? for(i=1,1000,factor(random(2^1000),2^18))
> > With 2.15.4
> > *** last result computed in 1,865 ms.
> > With 2.16.1
> > *** last result computed in 124 ms.
>
> How interesting! Thanks!
>
> Still, this does not explain what is so special about 20…
It used to be primelimit=500000, so we could have picked 19 , but
20 (2^20~10^6) is easier to remember. Also its square is 2^40~10^12.
Memory size have grown, so the extra memory requirement should not be
an issue.
Cheers,
Bill.