Ilya Zakharevich on Wed, 20 Jan 1999 21:02:10 -0500 |
[Date Prev] [Date Next] [Thread Prev] [Thread Next] [Date Index] [Thread Index]
[Another segfault] in factornf |
(Somehow this does not work with 64M stack, I needed 90M stack to reach the place I get a segfault.) This is a debugging cc-compiled 2.0.13 on Solaris. a=1;b=2;c=3;d=4;e=5;f=6;g=7;h=8;i=9;j=10; \\ homogeneous part pp=a*x^3+b*x^2*y+c*x*y^2+d*y^3 pp1=deriv(pp,x) pp2=deriv(pp,y) pp11=deriv(pp1,x) pp12=deriv(pp2,x) pp22=deriv(pp2,y) qq=pp2^2*pp11-2*pp1*pp2*pp12+pp1^2*pp22 rr=qq/pp \\ complete cubic p=a*x^3+b*x^2*y+c*x*y^2+d*y^3 + e*x^2+f*x*y+g*y^2 + h*x+i*y + h p1=deriv(p,x) p2=deriv(p,y) p11=deriv(p1,x) p12=deriv(p2,x) p22=deriv(p2,y) \\ Gives inflection points + 2x points at infinity q=p2^2*p11-2*p1*p2*p12+p1^2*p22 \\ Gives inflection points t=q-rr*p-(18*g*a+(-6*f*b+6*e*c))*x*p - (6*g*b + -6*f*c + 18*e*d)*y*p \\ x-coords of inflection points res = polresultant(p,t,y) \\ y-coords of the given inflection point factornf(p,res) quit Results in: *** segmentation fault: bug in GP (please report). Ilya