Max Alekseyev on Sat, 07 Aug 2010 23:54:00 +0200
|
[Date Prev] [Date Next] [Thread Prev] [Thread Next] [Date Index] [Thread Index]
Re: nfinit() is eager for memory
|
- To: pari-users <pari-users@list.cr.yp.to>
- Subject: Re: nfinit() is eager for memory
- From: Max Alekseyev <maxale@gmail.com>
- Date: Sat, 7 Aug 2010 17:53:53 -0400
- Delivery-date: Sat, 07 Aug 2010 23:54:00 +0200
- Dkim-signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=gmail.com; s=gamma; h=domainkey-signature:mime-version:received:received:in-reply-to :references:date:message-id:subject:from:to:content-type; bh=3GF1wetE1b38jOHy5deV0QOQpQeVd2xytYRNOQHAXq0=; b=lvLxX+qns9Ok9cFLZ60ANc29LrvrxLMfPOk+w6fwyo1S9kD5DCWc4UJnJO4OcAvyot vrr28YSQLdIAvXcnnzUNYvqGIHhNpS75iPwbqdPnT1ZWj2wqttPvFqx8zVp4CeF5HXGJ 2db+gCqgpTXqIDxGbWeQX3rCZdm6rgmdPUHN0=
- Domainkey-signature: a=rsa-sha1; c=nofws; d=gmail.com; s=gamma; h=mime-version:in-reply-to:references:date:message-id:subject:from:to :content-type; b=c21Cbu9JLua3LeXEgMU5Pt7QFvs6Hl7KzhPwi32kn6+gKKZG0dgia4rBEgPVzTM1B3 3k+W4bPyum5dSNi1WQqK58FN57+KrpDBkDhqpf7lkIwwkUJ9A88KDLszBk9xpqT9CPO4 EWAIiCY18SH4WEOeSWLRkhiRzmUdv9BAzNw6A=
- In-reply-to: <20100807165918.GB2026@yellowpig>
- Mailing-list: contact pari-users-help@list.cr.yp.to; run by ezmlm
- References: <AANLkTikqbs+iHjSE0kL4VFMdcApfzT24wOEcVxv6OW03@mail.gmail.com> <20100807165918.GB2026@yellowpig>
On Sat, Aug 7, 2010 at 12:59 PM, Bill Allombert
<Bill.Allombert@math.u-bordeaux1.fr> wrote:
> On Sat, Aug 07, 2010 at 10:19:32AM -0400, Max Alekseyev wrote:
>> nfinit(polcyclo(49321,y)) wants more than 12GB stack.
>
> Does it actually complete ?
Not really.
12GB was the maximum stack size I've tried.
>> Is that expected? Does nfinit() indeed needs that much memory?
>
> Independently of the algorithm used, nfinit output (amon other things) the
> multiplication table which is a NxNxN tensor where N is the degree of the polynomial.
> Here N = 45360, so it has 93*10^12 entries. This will not fit in memory.
Is there a way to overcome this?
My goal is to compute
nffactor(x^3+x^2-16440*x+80375,nfinit(polcyclo(49321,y)))
that is, to express roots of x^3+x^2-16440*x+80375 in terms of
trigonometric functions (by later substituting y=exp(2*Pi*I/49321)).
Thanks,
Max