Charles Greathouse on Thu, 05 Jul 2012 16:16:32 +0200


[Date Prev] [Date Next] [Thread Prev] [Thread Next] [Date Index] [Thread Index]

Re: Hello


> and how can i call a certain one of these polynomials?

I assume you mean evaluate them?  The command is eval.

Charles Greathouse
Analyst/Programmer
Case Western Reserve University

On Thu, Jul 5, 2012 at 10:09 AM, Ahmad Kamal <drkamal.mtc@gmail.com> wrote:
>
> and how can i call a certain one of these polynomials?
>
> Thanks alot for your help and support.
>
> On 5 July 2012 15:16, Karim Belabas <Karim.Belabas@math.u-bordeaux1.fr>
> wrote:
>>
>> * Ahmad Kamal [2012-07-05 13:47]:
>> > thanks alot i have tried it and it worked well,  but i want to ask
>> > another
>> > 2 questions please:
>> >
>> > 1- what if i want to guarantee that the polynomial to be of degree m not
>> > less than that.?
>>
>> x^m + random(A*x^(m-1))  \\ monic polynomial
>>
>> or even
>>
>> (1 + random(A-1)) * x^m + random(A*x^(m-1))  \\ general polynomial
>>
>> You may want to subtract (A>>1)*(x^(m-1)-1) / (x-1) to get positive
>> and negative coefficients
>>
>> > 2- how can i get n polynomials ( f1(x), f2(x) , ...,fn(x)......etc)?
>>
>> ? f(m, A = 100) = (1 + random(A-1)) * x^m + random(A*x^(m-1));
>> ? n = 5;
>> ? m = 3;
>> ? vector(n, i, f(m))
>> %4 = [11*x^3 + 91*x^2 + 53*x + 46, 80*x^3 + 85*x^2 + 5*x + 55, 3*x^3 +
>> 68*x^2 + 62*x + 81, 36*x^3 + 24*x^2 + 60*x + 38, 28*x^3 + 25*x^2 + 15*x +
>> 81]
>>
>> Cheers,
>>
>>     K.B.
>> --
>> Karim Belabas, IMB (UMR 5251)  Tel: (+33) (0)5 40 00 26 17
>> Universite Bordeaux 1          Fax: (+33) (0)5 40 00 69 50
>> 351, cours de la Liberation    http://www.math.u-bordeaux1.fr/~belabas/
>> F-33405 Talence (France)       http://pari.math.u-bordeaux1.fr/  [PARI/GP]
>> `
>>
>