Dirk Laurie on Wed, 13 Nov 2013 10:53:30 +0100
|
[Date Prev] [Date Next] [Thread Prev] [Thread Next] [Date Index] [Thread Index]
Re: Gram–Schmidt orthogonalization?
|
- To: "pari-users@pari.math.u-bordeaux.fr" <pari-users@pari.math.u-bordeaux.fr>
- Subject: Re: Gram–Schmidt orthogonalization?
- From: Dirk Laurie <dirk.laurie@gmail.com>
- Date: Wed, 13 Nov 2013 11:53:18 +0200
- Delivery-date: Wed, 13 Nov 2013 10:53:30 +0100
- Dkim-signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=gmail.com; s=20120113; h=mime-version:in-reply-to:references:date:message-id:subject:from:to :content-type; bh=N1Xg64IEdPdbSHNRSAHvORcp6bTbWPLKyPQCI2P6M6E=; b=bm/lzp7qjTeusgs5oh/Pybfrvg9M+AvHVdA8O0uYE1PQ5YEIrZEiKLtdqhywU0MSSN DCwG2NDXjNihCExkL8gDxeFYptz4olYSexOne4MOSwJdlnwwDw8bLFLXJhobjU9ReFdN SsYNvN+8DI0iOhqMTg5bu1XETY8bCGk2O05Ev4U3xZUE4GADwZ25G5MEmqA3qIi2rB26 2jzwCISITqNnCGYx8C2jR5QQH26P+Yg6YxqjGrvNSP7d8BAoDKtw9MAlhFV97FEX394W rn0YBiUav+x8hLAUeECu0Zu7MD4xMvZNZU05stb1y6FUiq43aX1RdGSkum+8K0NakjF4 bRQw==
- In-reply-to: <20131113075558.GB3960@math.u-bordeaux1.fr>
- References: <457DA19A.9060705@cage.ugent.be> <20131113075558.GB3960@math.u-bordeaux1.fr>
2013/11/13 Karim Belabas <Karim.Belabas@math.u-bordeaux1.fr>:
> We finally have matqr() since February 2013. :-) (It uses Householder
> reflections rather than Gram-Schmidt, but the end result is the same.)
Actually, the end result is better, in the sense that the
computed basis satisfies sharper bounds on numerical
deviation from orthogonality.