Denis Simon on Tue, 09 Jun 2015 17:29:45 +0200 |
[Date Prev] [Date Next] [Thread Prev] [Thread Next] [Date Index] [Thread Index]
Re: qfisom over Q |
Dear Jeroen, You can use qfsolve() in the following way: Let q1(x,y)=a1*x^2+b1*x*y+c1*y^2 and q2(x,y)=a2*x^2+b2*x*y+c2*y^2 be the quadratic forms. Solve q1(x1,y1) = a2 over Q using qfsolve([a1,b1/2,0;b1/2,c1,0;0,0,-a2]) Then complete the 2x2 matrix T=[x1,...;y1,...] to have det=1. Then T(q1) and q2 have the same 1st coeff and same det. It should then be easy to finish the job. Denis SIMON. ----- Mail original ----- > De: "Jeroen Demeyer" <jdemeyer@cage.ugent.be> > À: "pari-users" <pari-users@pari.math.u-bordeaux1.fr> > Envoyé: Mardi 9 Juin 2015 16:02:42 > Objet: qfisom over Q > > Dear pari-users, > > In qfisom, I am guessing that the isomorphism is supposed to be defined > over Z, i.e. the transformation matrix is unimodular. This is not so > clear from reading ??qfisom. > > Is there any way to do this computation over Q, i.e. allowing the > transformation matrix to be any non-singular rational matrix? > > Cheers, > Jeroen. > >