| Jacques Gélinas on Sun, 08 Oct 2017 10:09:19 +0200 |
[Date Prev] [Date Next] [Thread Prev] [Thread Next] [Date Index] [Thread Index]
| RE: a(n+1) = log(1+a(n)) |
Precompute the logarithm values once for all.
v=2;V=vector(400,n,v=log(1+v));
g(n)=n*(n*V[n]-2)/log(n);
g(400)
Jacques Gélinas
De : Elim Qiu <elim.qiu@gmail.com>
Envoyé : 7 octobre 2017 23:44
À : pari-users@pari.math.u-bordeaux.fr
Objet : a(n+1) = log(1+a(n))
I'm study the behavior of n(n a(n) -2) / log(n)
where a(1) > 0, a(n+1) = log(1+a(n))
Using Pari:
f(n) =
{ my(v = 2);
for(k=1,n, v = log(1+v));
return(n*(n*v -2) / (log(n)));
}
It turns out the program runs very slowly. The same logic in python runs 100 time faster but not have the accuracy I need.
Any ideas?
Thanks