Jacques Gélinas on Thu, 14 Dec 2017 18:55:19 +0100 |
[Date Prev] [Date Next] [Thread Prev] [Thread Next] [Date Index] [Thread Index]
issquare(polynomial) ? |
How can I best use PARI/GP to detect if a polynomial is a perfect square ? This question comes from an attempt at proving that DN() below is positive. \\ Jensen polynomial P(n) = sum(k=0, n, binomial(2*n,2*k) * a(k) * x^(2*k) ); \\ 1, 1, 3/(d+3), 3/(d+3) * 3/(d+3)*5/(d+5), ... a(k) = 1 / prod(j=1,k-1, prod(i=1,j, 1 + d/(2*i+1) )); dsc(n) = (-1)^n * poldisc( P(n) ); dsc(1) == 2^2 dsc(2) == 2^8*3^3 * (3*d+8)^2 / (d+3)^3 dsc(3) == 2^6*3^12*5^5 * (5*d+16)^2 * (15*d^3+160*d^2+540*d+576)^2/ (d+3)^10 / (d+5)^5 \\ explicit formula for the denominator of the discriminant DD(n) = prod(j=1,n-1, (d+2*j+1)^( (2*n-1)*(n-j) ) ); 8 == vecsum(vector(8, n, DD(n) == denominator( dsc(n) ) )) \\ is the numerator a perfect square ? ND(n) = numerator(dsc(n)); ND(2) == 2^8*3^3 * (3*d + 8)^2 ND(3) == 2^6*3^12*5^5 * (5*d+16)^2 * (15*d^3+160*d^2+540*d+576)^2 issquare(ND(4)) *** at top-level: issquare(ND(4)) *** ^------ *** not a function in function call Jacques Gélinas