1 Systems of coordinates, connections

Let Λ be a Dedekind domain with field of fractions C. Systems of coordinates for a (nonzero) finitely generated projective module P over Λ arise directly from the splitting of a map $\Lambda^{g} \rightarrow P$ determining a set of g generators for P. Because Λ is a Dedekind ring the situation simplifies. First, by Steinitz' theorem, P has the form $\Lambda^{r-1} \oplus \mathfrak{a}$ with \mathfrak{a} a nonzero integral ideal of Λ. The case of a free module being straightforward, we are reduced to studying systems of coordinates for \mathfrak{a}.

If we wish to consider a set of g generators for \mathfrak{a} (in general, we may take $g \leq 2$), then we start with a map $\pi: \Lambda^{g} \rightarrow \mathfrak{a}$ with the generators of \mathfrak{a} given by $\pi\left(e_{j}\right)$ where $e_{j}=\left(\delta_{i j}\right)_{i}$ (using the Kronecker delta) represents the standard basis of Λ^{g}. Since \mathfrak{a} is projective, π admits a splitting $\sigma=\left(\sigma_{1}, \ldots, \sigma_{g}\right): \mathfrak{a} \rightarrow \Lambda^{g}$ with $\pi \circ \sigma=\operatorname{id}_{\mathfrak{a}}$. Each $\sigma_{j} \in \operatorname{Hom}_{\Lambda}(\mathfrak{a}, \Lambda)$.

Lemma 1. Let \mathfrak{a}^{*} be the fractional ideal inverse to \mathfrak{a}; that is, $\mathfrak{a} \mathfrak{a}^{*}=\Lambda$. Then there is a canonical isomorphism $\mathfrak{a}^{*} \rightarrow \operatorname{Hom}_{\Lambda}(\mathfrak{a}, \Lambda)$.

Proof. Define $\mu: \mathfrak{a}^{*} \rightarrow \operatorname{Hom}_{\Lambda}(\mathfrak{a}, \Lambda)$ by sending any $a^{*} \in \mathfrak{a}^{*}$ to the map $a \mapsto a a^{*} \in \Lambda$. In the other direction, because for $a, b \in \mathfrak{a}-\{\mathfrak{o}\}$ and $\varphi \in \operatorname{Hom}_{\Lambda}(\mathfrak{a}, \Lambda)$ we have

$$
\varphi(a) b=\varphi(a b)=a \varphi(b)
$$

φ determines a unique element, written as, namely $\nu(\varphi)=\varphi(a) a^{-1}=\varphi(b) b^{-1}$ of C. It is easy to check that the homomorphisms μ and ν are mutually inverse.

Thus, we can abuse notation and equally write $\sigma: \mathfrak{a} \rightarrow \Lambda^{g}$ as $\sigma=\left(\sigma_{1}, \ldots, \sigma_{g}\right) \in\left(\mathfrak{a}^{*}\right)^{g}$ where for $a \in \mathfrak{a}-\{0\}$ we have $\sigma_{j}(a)=\sigma_{j} a$. It is often convenenient to write $s_{j}=\pi\left(e_{j}\right)$. Then the fact $\pi \circ \sigma=\operatorname{id}_{\mathfrak{a}}$ corresponds, for each $a \in \mathfrak{a}-\{0\}$, to

$$
a=\pi\left(\sigma_{1} a, \ldots, \sigma_{g} a\right)=\pi\left(\sum\left(\sigma_{j} a\right) e_{j}\right)=\sum\left(\sigma_{j} a\right) \pi\left(e_{j}\right)=a \sum \sigma_{j} s_{j},
$$

from which we deduce that $\sum \sigma_{j} s_{j}=1$. Conversely, given elements $s_{1}, \ldots, s_{g} \in \mathfrak{a}$ and $\sigma_{1}, \ldots, \sigma_{g} \in$ \mathfrak{a}^{*}, these displayed equations reveal that when $\sum \sigma_{j} s_{j}=1$ we obtain $a=\sum s_{j} \sigma_{j} a$, whence $\left(s_{1}, \ldots, s_{g} ; \cdot \sigma_{1}, \ldots, \cdot \sigma_{g}\right)$ forms a system of coordinates for \mathfrak{a} in the classical sense. Since $\mathfrak{a}^{* *}=\mathfrak{a}$, we also see that $\left(\sigma_{1}, \ldots, \sigma_{g} ; \cdot s_{1}, \ldots, \cdot s_{g}\right)$ is equally a system of coordinates for \mathfrak{a}^{*}. In sum, we have the following.

Lemma 2. A system of coordinates for a nonzero ideal \mathfrak{a} of Λ is precisely a pair of g-tuples $\left(s_{1}, \ldots, s_{g}\right) \in \mathfrak{a}^{g}$ and $\left(\sigma_{1}, \ldots, \sigma_{g}\right) \in\left(\mathfrak{a}^{*}\right)^{g}$, written $\mathscr{S}=\left(s_{1}, \ldots, s_{g} ; \sigma_{1}, \ldots, \sigma_{g}\right)$, such that $\sum \sigma_{j} s_{j}=$ 1. Equivalently, such pairs of g-tuples written as $\mathscr{S}^{*}=\left(\sigma_{1}, \ldots, \sigma_{g} ; s_{1}, \ldots, s_{g}\right)$ are equivalent to systems of coordinates for \mathfrak{a}^{*}. In general, we may choose $g=1$ when \mathfrak{a} is principal, and $g=2$ otherwise. Every nonzero ideal of Λ admits systems of coordinates.

