| Peter Pein on Mon, 09 Jul 2018 14:17:27 +0200 |
[Date Prev] [Date Next] [Thread Prev] [Thread Next] [Date Index] [Thread Index]
| Re: Truncation Precision in PARI |
that is not very accurate :( I get: precision(-1 - Euler + 3/2*log(2*Pi) + 6*zetahurwitz(-1, 1, der = 1), 100) %1 = 0.1870730725097797894509591576777666319578148029622159376465535484192711630046534855901322306210633101 or via series devel. of the summand w.r.t. k and changing the order of summation: sumalt(n=2,(-1)^n*(n-1)/(n+2)*zeta(n)) %2 = 0.1870730725097797894509591576777666319578148029622159376465535484192711630046534855901322306210633101 (which evaluates fast) Peter