Paul Underwood on Fri, 27 Sep 2019 15:03:50 +0200
|
[Date Prev] [Date Next] [Thread Prev] [Thread Next] [Date Index] [Thread Index]
qfbsolve (and ispseudoprime)
|
- To: pari-users@pari.math.u-bordeaux.fr
- Subject: qfbsolve (and ispseudoprime)
- From: "Paul Underwood" <paulunderwood@mindless.com>
- Date: Fri, 27 Sep 2019 14:58:43 +0200
- Delivery-date: Fri, 27 Sep 2019 15:03:51 +0200
- Dkim-signature: v=1; a=rsa-sha256; c=relaxed/simple; d=mail.com; s=dbd5af2cbaf7; t=1569589427; bh=YDC3CxLcBzt0Z5WjUjGjUirNb3bXpuCjSOAB8gvSXVg=; h=X-UI-Sender-Class:From:To:Subject:Date; b=VHT3QRCoZr+xs7qGtxwp4OtuXCliaZUF0bHaNsgTsvaiOexbNiEHWOmer98IGOK+9 f+w6GEjv2YV4xjGr9/ww66xQ2KP2YioHt7fUTBC7MZz93rkbc7LlIm+e3/JKDilawP 59Pj3SbmYykcXnKagXtdxm5Eb1v9IeP0IOLefrCg=
- Sensitivity: Normal
It is a pity that the function qfbsolve is much slower in 2.12 alpha where it solves for composite n too.
For example:
gettime();k=198;n=2^p-3;if(qfbsolve(Qfb(1,0,1),n),print([k,gettime()]))
overflows the default stack whereas it gives an almost instantaneous answer with version 2.11 and version 2.9.
Also, qfbsolve(Qfb(1,0,1),n) *was* quicker than ispseudoprime for positive integers of the form 4*K+1,
Best
Paul