| Dr. Wolfgang Lindner on Mon, 13 Apr 2020 18:46:44 +0200 |
[Date Prev] [Date Next] [Thread Prev] [Thread Next] [Date Index] [Thread Index]
| [PariGP] arithmetic modulo polynomials - best syntax question |
Dear group,
testing congruence modulo a polynomial I try to show that:
in Z/5Z[X] the polynomials f=1+x+x^2 and g=1-x+3*x^3
are _not_ congruent modulo p=X^2.
I like the very straightforward and compact syntax of Pari/GP.
So I tried to show the above task on several ways.
(Sorry to ask such rudimental questions but I am retired and there is
no one else that I could ask.)
--------------------------- Here is my CODE:
f=1+x+x^2
g=1-x+3*x^3
f5=f*Mod(1,5)
g5=g*Mod(1,5)
Mod(f5,x^2)
Mod(g5,x^2)
Mod(f,x^2)
Mod(g,x^2)
\\ 1. Test
Mod(Mod(f,x^2),5)
Mod(Mod(g,x^2),5)
\\ 2. Test
Mod(f,x^2)*Mod(1,5)
Mod(g,x^2)*Mod(1,5)
\\ 3. per definition
(f-g) % x^2
------------------------- HERE is the ANSWER of PariGP:
x^2 + x + 1
3*x^3 - x + 1
Mod(1, 5)*x^2 + Mod(1, 5)*x + Mod(1, 5)
Mod(3, 5)*x^3 + Mod(4, 5)*x + Mod(1, 5)
Mod(Mod(1, 5)*x + Mod(1, 5), x^2)
Mod(Mod(4, 5)*x + Mod(1, 5), x^2)
Mod(x + 1, x^2)
Mod(-x + 1, x^2)
Mod(Mod(1, 5)*x + Mod(1, 5), x^2)
Mod(Mod(4, 5)*x + Mod(1, 5), x^2)
Mod(Mod(1, 5)*x + Mod(1, 5), x^2)
Mod(Mod(4, 5)*x + Mod(1, 5), x^2)
Q: - is the test syntax ok?
- or are there better suited solutions/formulations in Pari/GP ?
Best
Wolfgang
- - -
Dr. Wolfgang Lindner
Leichlingen, Germany