Karim Belabas on Mon, 27 Dec 2021 13:26:41 +0100 |
[Date Prev] [Date Next] [Thread Prev] [Thread Next] [Date Index] [Thread Index]
Re: Precision loss of zeta(2)-zetahurwitz(2,N+1) in some range of N ? |
* Gottfried Helms [2021-12-23 08:35]: > I recently came across this, when I wanted to > use zeta and zetahurwitz for sum of reciprocal squares > up to large N. My default precision is always 200 dec > digits and so this gave a signal... (I never > observed such a problem of loss of precision with the > harmonic numbers and the psi()-function) > > H2o(m)=sum(k=1,m,1.0/k^2) > H2(m)=zeta(2)-zetahurwitz(2,m+1) > > H2o(20)-H2(20) > H2o(200)-H2(200) > H2o(2000)-H2(2000) > H2o(20000)-H2(20000) > H2o(200000)-H2(200000) The(trivial) case Re(s) >= 0 and x >> 1 was treated incorrectly. It's now fixed in 'master'. Thanks for your report ! K.B. -- Karim Belabas, IMB (UMR 5251) Tel: (+33) (0)5 40 00 26 17 Universite de Bordeaux Fax: (+33) (0)5 40 00 21 23 351, cours de la Liberation http://www.math.u-bordeaux.fr/~kbelabas/ F-33405 Talence (France) http://pari.math.u-bordeaux.fr/ [PARI/GP] `