Ruud H.G. van Tol on Tue, 04 Jan 2022 13:04:09 +0100 |
[Date Prev] [Date Next] [Thread Prev] [Thread Next] [Date Index] [Thread Index]
Re: Collatz nature |
On 2022-01-04 04:31, Ruud H.G. van Tol wrote:
x -> (3x+1)/2
Corrected table: p3:_9[_7]11|17|13[_5]_1| p2:__|14|22|34|26|10|_2| _____|28|__|__|52|20[_4] _____|__|__|__|__|40|_8| _____|__|__|__|__|__|16| Corrections: - added 14; - marked 'next lower' with []. - - - - - - The sieve-formula for `9` is [2,9,1,7] (i * 2^2 * x + 9) -> i * 3^1 * x + 7) so p2=2 and p3=1. (9 is 4x+1) The sieve-formula for `7` is [7,7,4,5] (i * 2^7 * x + 7) -> i * 3^4 * x + 5) so p2=7 and p3=4. The sieve-formula for `5` is [2,5,1,4] (i * 2^2 * x + 5) -> i * 3^1 * x + 4) so p2=2 and p3=1. (5 is 4x+1) The sieve-formula for `4` is [2,1,1,1] (i * 2^2 * x + 1) -> i * 3^1 * x + 1) so p2=2 and p3=1. (1 is 4x+1) - - - - - - The inverse ("(x-1)/3") is always a sequence, in which each element is one of: - a dead end (0 == (x % 3)) (an "empty" sequence) - in need of multiplication (2 == (x % 3)) (a singular) - a sequence itself (1 == (x % 3)) -- Ruud