Bill Allombert on Wed, 04 Jan 2023 22:19:48 +0100
|
[Date Prev] [Date Next] [Thread Prev] [Thread Next] [Date Index] [Thread Index]
Re: Solve an non-homogeneous system of equations mod Z.
|
- To: pari-users@pari.math.u-bordeaux.fr
- Subject: Re: Solve an non-homogeneous system of equations mod Z.
- From: Bill Allombert <Bill.Allombert@math.u-bordeaux.fr>
- Date: Wed, 4 Jan 2023 22:18:36 +0100
- Arc-authentication-results: i=1; smail; arc=none
- Arc-message-signature: i=1; a=rsa-sha256; d=math.u-bordeaux.fr; s=openarc; t=1672867117; c=relaxed/relaxed; bh=QQwY6LoBgG9xA5pBXtLl5X4kEo12vrbpLg5P49clzp4=; h=DKIM-Signature:Date:From:To:Subject:Message-ID:Mail-Followup-To: References:MIME-Version:Content-Type:Content-Disposition: In-Reply-To; b=ef5dNPtUTqz6piwLM6wO/3GEc6kL9SPqDcnYt7LPYvg2cUA/Vt1059aYiqiKm21ww5T3B/9cQrBRifPeThKy3ZiuP25eO9uVJdOnJ80x9B/4AQjS2ElT4YFg8uL7KBb3U87VER3aD++GKI17UuU1tnOGeyNip3SnLvjHpQixS8RWlw5CwVrQGc2IpVdE/MaEc+Z6NaY+rVdb9X5hPSikErsH00RG5Yn/SoQfljG9H8qjmb4GSrM7OPcG6gmwfgcPxcB9qiG6Vmo+lQsJpMtK/YvX1mQt/Q8KArwmcDm7ZiB1WB1HPMSU+dXO8PpIvUA0KuoL+ZGtVxFnOYN4OYwuO4u5EipixbwcWi4pxxOD3HZuINlz5TZjvEzBUGOor/i3wTay9e7Biz1k8ClMHa0kYgyITUGlA6hqEI2wMOLR4TrvFH2UM5CyafSjk0nR9nPJ/nd7dFMHiwUu/YlBKgTeVF/mKTFn6pPJUFLi3bEnR/JgF9up6E6XM+taXbWnqdsKkTzgASOFQn19p2kOReiwA9moHxt0BU0aid85KpevwzxLe6Kk/VpUFhV3OVAArwpSNhmBWhQeFG4Ecv4VSBs6+TCkq0Olb6+ZWJuRL9EpnUK8oEiWNHUm+3qX0hoK0mtyOSThM1ZIASOEqqw/CV2u177rLptPO08lpgRh1MajrqQ=
- Arc-seal: i=1; a=rsa-sha256; d=math.u-bordeaux.fr; s=openarc; t=1672867117; cv=none; b=RRy7EOvUZSUyE7SYvSRI6jp6aoHKC730GjDvYPpGqqWbqWQvOVopwAay/0Fa5ZivUu7t83Fvm+tsBmYm2Zn89ph3c/ZSNuqFVcmnBLpI3Fxqe3MwdxJJk4Pu5icm9n+B8DnecxM+uw6kyDrQT/bvqgVfuQKG/F2Vt1u6I6XCW8/36+qtW8C+qf+DY6DyLb9tPvU5hinP8LPemCmBJUUWxDwZAwcVC4SiIPEdqKC6DPCskbipEapIbxpAvnqFMOw/ClykJV612sXiFzG4DkghGlnL2O2efPQanS3gvtr7kI5hzA9Svb8T/bQNxptUEPASqTEil4OOe8euPBEGSvwS6Em9uh9tW32gRuP29nE0VUA/rOVtNS0OaH59eA+Sdb4bysFVU84CvCQhEEmhMBMNSTYREgLDjJ5uU8iHmQsmmiJilGLVcz+dh/VNtKID/oFMn9kC7bW28cXjyjTnxZ40t/06sbJ4aWZu7J/jcREXp1KVK5i6KWRn3KY7JSH7yJXEkivZKzwqM6NBsngmvfm99R3i1XgDTOxcDGCyVgStTW4ANWpf+0j49Lk+oJhdWK/SFvAoJ7rUEbLQjj6jD7CM/wGrW+hFqxTLmQ825VTQgL2N3rBgoe8mWeLIWW46WAmihCc71lNbLz51AB+oLcjqcikXfiQ6cuzLBa+GKGI2pQM=
- Authentication-results: smail; arc=none
- Delivery-date: Wed, 04 Jan 2023 22:19:48 +0100
- Dkim-signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=math.u-bordeaux.fr; s=2022; t=1672867117; bh=QQwY6LoBgG9xA5pBXtLl5X4kEo12vrbpLg5P49clzp4=; h=Date:From:To:Subject:References:In-Reply-To:From; b=FX8Kc9ZTA6dN17EE3f1+jyCb+Y4DlhTB8K6LZHiQ8LSjuI5QLXwilftCowJXgvKs9 eG2QeZCGOt58YX/JaUYnkTuG4Iz3xIDK5LzVCqDE7p6/gOCFTLu54HEsT78O1+C9L2 W8sL1XmasgmZIdTK8iZaTuvNoSFqyeqzEbRQFSwgp6EM65TUtNtanBOgUdm1z0jEo7 C9frONhDgiKJBvTXExuZzvukauLpl1Zp2AHcOOy0eYotFQuMRoa32tiAmKdqEDmOy4 fvT3+TRt0qKPT49yHKOXoaHzuAZ3O1f6Bzs/PD42sxJFxZcYGrD4NP0vdPYqmJnQNP wndeux0PclEk6pFYsI5gNUSsgvMAZx67LyJMW+ZVmfHA93glX/qLxC9AaBhw6a9lWU m/O1Kt3CiOhbNpvr96upx0wByGFKSx9+pN3/eWh9OyTvxPs8i/39KF/8jig/ddVCpt Xft5Wo0fR8kvvnaK0qjiUlng84Waru06WxSLxlYnD04WCJ4/eAv7dvQDgBSsrVMkyF lhz/wTkOn4rKZ8KmadsuGW6FWhh4Dbaqr3nfBp2lOZ2NG6ZLUNjGnIs0F4S5F+q+yg ZlFAUeCU8mnVVYBEQD63htmP+A8UqaoWtah4deBifWDB32JY5msSCBjGCBZPt5/6Nk nQG2Vo61lnwMKk96uQN1E6go=
- In-reply-to: <CAGP6POLYCssCjSL3FVgKu3nqLKUg+QpXann0g1mpmj9WsH=NWw@mail.gmail.com>
- Mail-followup-to: pari-users@pari.math.u-bordeaux.fr
- References: <CAGP6POLaF0wGKK_+4oxr_=P7sjORmDvdx=zCwyoWpD-gQ8jGaQ@mail.gmail.com> <Y7Gp2fNv8ecvtWeT@seventeen> <CAGP6POLYCssCjSL3FVgKu3nqLKUg+QpXann0g1mpmj9WsH=NWw@mail.gmail.com>
On Mon, Jan 02, 2023 at 11:28:25AM +0800, Hongyi Zhao wrote:
> > > I want to find a common set of solutions, a.k.a., x, for the above
> > > matrices and their corresponding vectors, which satisfy the following
> > > conditions:
> > >
> > > mat * x = vec (mod Z). \forall mat \in mats, and \forall vec \in
> > > vecs in the corresponding order.
> >
> > What is Z ?
>
> I mean the set of integers [1], which is often denoted by the
> \textbf{Z} or \mathbb{Z}.
>
> In my case, the actual meaning is that the mod 1 of each component of
> the vector vec, a.k.a.,
>
> mat * x = vec (mod 1 for all components of the vector)
So you mean (mod Z^n) where n is the dimension.
The set of solutions is an affine lattice.
You can embbed the affine space to a n+1 dimensional linear space and
compute the intersection of your affine lattices there.
If GAP has a function SolveInhomEquationsModZ, this will be probably easier
with GAP.
With PARI you can use matkerint and mathnf.
Cheers,
Bill