Bill Allombert on Fri, 06 Jan 2023 21:51:53 +0100
|
[Date Prev] [Date Next] [Thread Prev] [Thread Next] [Date Index] [Thread Index]
Re: bnrL1 output ordering
|
- To: pari-users@pari.math.u-bordeaux.fr
- Subject: Re: bnrL1 output ordering
- From: Bill Allombert <Bill.Allombert@math.u-bordeaux.fr>
- Date: Fri, 6 Jan 2023 21:50:43 +0100
- Arc-authentication-results: i=1; smail; arc=none
- Arc-message-signature: i=1; a=rsa-sha256; d=math.u-bordeaux.fr; s=openarc; t=1673038242; c=relaxed/relaxed; bh=XSspSNiHQcjmQKC0flgUYfIzlQwj2eQpYxQZXIhQHAY=; h=DKIM-Signature:Date:From:To:Subject:Message-ID:Mail-Followup-To: References:MIME-Version:Content-Type:Content-Disposition: In-Reply-To; b=Lg3vY55kE/STU+9Y6el1oUxIfvPEq2bJE+gS0R6K/QQ2IIej3LU1hzGWRYlVObPYbPxOD9P2yWfMYd37oe34D/oxoAMU53mxBlSvU9xIXZ3YbDCTkhnicCE/wF3/LJAS1BolWO4Z47Dv8nx66D0sAymjVF01NrVpl5RSRlyxAyIPslmUkmG18Demhmi0GgJdGyYWXkQ+2itYIrT1ViSeYtMODv5+NaMy3E+fZ2sa40uvDOKAI6nxB8gG+UDS4UiOBRBTCtmhAuPznhgE5jZuLzwKRULtY3YgrDI5GDyDIPG3TGtv/i4TQM2XH9thRKLauq7KWCFkIZlIj+7dyzPFHSdv1QwwojN6OyVRGkirbmIfejjiy4wH5dnX962+h9A+FwCtQODZQxNNtLi4pXnWn2JngUnQ886q9uba6tYN3qIPZ9+YKeVzHqdkcl1SPRVLsxxiWOp1PYxPOCCH218wPcc7/MC954m8k+wlXQpPjvu+tTZJV4u4+HacmSa3O0cg95MYnkDMmt5UULjT3QTsKDFYKjbC+iYVVxiF4KC86WA8CyGpR9MlPd3tk9GtAAUz6JurAeCV9mAOwX0bwspib9gvslHXWYtfrEiSV9A9NN1KwhujHDZcrw7Gn7OCGXjEp4ZW9Vnhq65o3QA1dCxyPe0XW/AMkVAvWSiDYOLeY8c=
- Arc-seal: i=1; a=rsa-sha256; d=math.u-bordeaux.fr; s=openarc; t=1673038242; cv=none; b=fwqpc5apZMKutmtcbr4UMNEFH6B09BhZQAkHohdm0+Ha9rhnSzv/6IROTzjYs/YiH8MaiszegEzXqB8UR6+SS/xfE7Py7+A8Ty+jY5nB6ixX0hPpnp8bl22be/9YN8E0C1RCier22lJc1yR18YTeLdEHV9hfa3K1amWucndvnTHL1B9K25CPuAcUQ6C96G1Tzd+S2Wa1H8WZJxM+0WR8+A3ao+Hqmt6Dc4SsMO7/oq1JoCkrSylnIVgD2mpaJePzYTAa8GxVSfkss9ZmyBe6AKtfnO4Lci4EglbHFRTKr50CQkE3Hn5vtYP9YnTzrKULQ+4R4oi0pPqWmGufEWKvqNsBj6hTTpGE2NTQzR8/9Bc6jVwRkzGLyicIQkjb8yZ8pEKFlLST+vnAios+6+U2IlBxLgmDJo1uqJ7r8lZ0+y7MP2+jZcuPOtY10CwIc9CHhqx0tHGvMxRPystivA7GgXtaOcME413o9WW+DgA+gMbRlIy5I3Rc6gCp6AIpZUhX3GssfWaQtndsSNG1tx60ks1IueC3WbHcmIWHM8gc7Icn33bRMwY9sNybqhq3wkIev4UPtqB7qIQvSDebPHMRFSdCsPLguKPvBifgQIGkB4ftR6WpQHhKUTIbV2NwPDG5M2uiJOcfnH5D2sy6uYR5PIdgHoHSdSPTLPACHQPIhvM=
- Authentication-results: smail; arc=none
- Delivery-date: Fri, 06 Jan 2023 21:51:53 +0100
- Dkim-signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=math.u-bordeaux.fr; s=2022; t=1673038242; bh=XSspSNiHQcjmQKC0flgUYfIzlQwj2eQpYxQZXIhQHAY=; h=Date:From:To:Subject:References:In-Reply-To:From; b=tnU4gbNEo5szdzAijHgdaSOzq/hqY96M4Zvm8WoNYkadjwc65gUr6w4WTVi6pWDjx ar0+ltDcOhypUYDgiTGqH6xOsg8CYVSRLfXeTIf/8TjdzxWvkKv/3Dp9f8JCcX1P4E EYLQNdJ2uJ1IJai410jc7qcJFh+jglfm9aPKe4f9sdqlM44Wqf/A/T33m9uiaS/y9S pzQSx6K/ISwrq/++GcEg1yQ9mLbjMzaE99DFBkcCdq7Gkj4q0wu8M5FnAZG0+D7zBA 8RfZMo7SMFQqm7TevrA119TmgkRLCchfgTGYm8ozvFvPCQX519oUg7xlI+qPc0CgQh 53b3DnU3BoKEKjICl4ntKS558pEYON6Vxe6pN4xfNSPnh2h4zqm5XJo1hhEjG2dNbq QDKW6lkPWinS4OMb14vjEmH4dO7JBeDQzpzhBdcuXes0qeO+ecPiRAFw++aGivcNkp 6+V9GXUkDE6xCn4EgW/wbo4JDFJQ3lPElGp+RbmDvA3S08WkcQtK7JiIZRuFEC1/K5 vcmzolI5f8IJCaa19NVur/cz8qq9GJdOH41F99DNCwDAbcv48NBS3rgcF5J8EMSf5G xGgNxyleMy/2qGqMZ3KyjaWBWOu5aRWzttLJ3GRCoBaMYCGUWOiePzNT2vhCXhVEsK TG5ek1M9GgEp/CXacV/3Zyfk=
- In-reply-to: <CAL1WnZo+99rwB1jKDWwncVQjbfGZJ7ejzW9Sq-8DSdgfCrZijQ@mail.gmail.com>
- Mail-followup-to: pari-users@pari.math.u-bordeaux.fr
- References: <CAL1WnZoQWXZxv90fse_PfS-Vip_iMs+s_UpArx-3LjjokQ8ZEQ@mail.gmail.com> <Y7ht9fRZoK3VWgF+@seventeen> <CAL1WnZo+99rwB1jKDWwncVQjbfGZJ7ejzW9Sq-8DSdgfCrZijQ@mail.gmail.com>
On Fri, Jan 06, 2023 at 09:11:29PM +0100, Pierre Charollois wrote:
> Thanks Bill !
>
> I am indeed interested in Dirichlet series that are the sum over ideals in
> a given ideal class (including a sign character) for complex cubic fields.
What kind of sign character ?
You can try this one that take a bnr as input, so you can include
places at infinity.
charall(c)=
{
my(L=List());
forvec(v=vector(#c,i,[0,c[i]-1]),listput(L,v));
Vec(L);
}
partialzeta(B,s)=
{
my(pr=idealfactor(B,B.mod)[,1]);
my(C=charall(B.cyc), d=lcm(B.cyc), M=matdiagonal(B.cyc)^-1);
my(V=apply(c->lfun([B,c],s),C));
my(W=apply(c->prod(i=1,#pr,1-pr[i].p^(-s*pr[i].f)*chareval(B,c,pr[i])),C));
vector(#C,j, sum(i=1,#V,exp(2*I*Pi*C[i]*M*C[j]~)*V[i]*W[i]))/#C
}
? bnf=bnfinit(a^3-37);bnr=bnrinit(bnf,[1,[1]]);
? partialzeta(bnr,2)
%2 = [1.1364431204298725596424145099053270595+0.E-40*I,0.43276840644100776464031947320118672180+9.795786256852395900E-40*I,0.36327588248510712879791291401014770222+0.E-38*I]
? vecsum(%)
%3 = 1.9324874093559874530806468971166614835+0.E-38*I
? lfun(bnr,2)
%4 = 1.9324874093559874530806468971166614835
Cheers,
Bill