Karim Belabas on Mon, 13 Mar 2023 10:20:47 +0100
|
[Date Prev] [Date Next] [Thread Prev] [Thread Next] [Date Index] [Thread Index]
Re: Determine the mirror reflection relationship between the coordinates of two sets of pairs of points in n-dimension space.
|
- To: Hongyi Zhao <hongyi.zhao@gmail.com>
- Subject: Re: Determine the mirror reflection relationship between the coordinates of two sets of pairs of points in n-dimension space.
- From: Karim Belabas <Karim.Belabas@math.u-bordeaux.fr>
- Date: Mon, 13 Mar 2023 10:19:28 +0100
- Arc-authentication-results: i=1; smail; arc=none
- Arc-message-signature: i=1; a=rsa-sha256; d=math.u-bordeaux.fr; s=openarc; t=1678699161; c=relaxed/relaxed; bh=0gZqi33NC1PI29J98qJWbtLG2OMlT0seJ7bWFQe0o5g=; h=DKIM-Signature:Date:From:To:Cc:Subject:Message-ID: Mail-Followup-To:References:MIME-Version:Content-Type: Content-Disposition:Content-Transfer-Encoding:In-Reply-To; b=lKtnCeb503xGog+Lh9oiSSSTFfpn0nUHtn+0+WCaminhRcgtumm6w+v5jeK0G6WTknic4JoHZWlelrznaLP4G6Z6/O032Ld+L7Fy/IL2S9JQDPbFQEy/mYRfjBAbvPUExvhybWEsRyDexkQ5fauFMv8VYpYRpg94ChLmaWnnzODZXbK8UZIN44sMZ+mzTTtn1ZHesglQfztCVgcd8+SV/t2vp0yL5yjac7jnYX4Ay4bkZBTXhPKEc+STTqWvvKMsFb+pk92c/7lDQ4acfuUCFx02yS34ccfOMKUTVtrxmq+enRWytaaKHEghwM/aK8gq+5O+JhXzUj0rYcytWN2ezjpSCewz2thVS4viV05Dko/kjlqL8hIwYI4WzXDd+/Cj3YiiymTT1rIdKHz6nPmcPiZwHGPAcs+dmjTTIU6I/XveLnuFNpvP5uBiVgaYws6MKrmSu3CAFqx1TNyFcx3sgDIrgKvjI+Zll4jplFw6yNa3SWmHJOkNzxXe6wOJ8DmkJsEcEjRak/UR9/iVS5+ho5/Yw3YRKrnO5RA8Ud1TsHSw2Vjz4ppQEG5O9oWP+OUUxuoeZci8Qo2SLoayjjsatlK4Txn++wwgynzUSMjq7CLqZPUMcIF7xVPug6TbOWM1Gv3aWRgelyXoywfn5h93KI22PJskid4Xfqds06Akg4g=
- Arc-seal: i=1; a=rsa-sha256; d=math.u-bordeaux.fr; s=openarc; t=1678699161; cv=none; b=AeCUE2QnwFuczGiSdrWNuin961BWhBGbx5bIHdp4DfPm2BYA8ggHwj7dN49DUxmCg7v2fuQEqX3AEOWVS0/+1E/QpaoAh8Gm2hY0jJbq7l1MABoaGz3Pcr/yYLZ1crT2Lbtu5bR76qU127HCRytXby5e+ltZCVuKsgSQiQzfmzrsjVQNe7l7tywJ1wQQpKTa+jDdZCZMhnJcpEPiEnROeSrjApVXUcCRla/+o1aFAIrTI+OJ8Oy+qdVF51YX9rFuNuUMs6/MlC0A4D8gvIHeD0tjE+tQb8Kd+eAiJrPSMt4HxfLGqR4HAUV0YT0wwj1zMEDjDTfDsMMA2521TlQeTTjvDHzXLJ/AFBZ/VGrVsNuML5+cePlsDg9nKAM45ic+GhHWvCtKz9wIboXT0BVVr/qib7dC5YkzJgVHVVbZ/aJ1UjVdBGL88SbA4FLZYEAC1zZSWT2e9yftXlCKw86Osk0iFbvP+gO7lXFgSsqfLoWbwXJUVMvans/d5iwuIvVbRb1r5/KMyXn3NCzDWvaZTRFLPoaV1ZjEKeBsV+ryQN1yw50wMKXWEKOFUjiA8XtGTG2iOTiLcWyzLtP1JsxOqB9IlcfcAZAyTpdQZRXPH0bypCyjgFr24dcNtaNib1ssGTxgC3zUMCP+EhgZFwvKOYCEz6kcJAQ9j8ebcjxd16A=
- Authentication-results: smail; dmarc=none header.from=math.u-bordeaux.fr
- Authentication-results: smail; arc=none
- Cc: pari-users@pari.math.u-bordeaux.fr
- Delivery-date: Mon, 13 Mar 2023 10:20:47 +0100
- Dkim-signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=math.u-bordeaux.fr; s=2022; t=1678699161; bh=0gZqi33NC1PI29J98qJWbtLG2OMlT0seJ7bWFQe0o5g=; h=Date:From:To:Cc:Subject:References:In-Reply-To:From; b=UP5lRZZWgdWXkyHxV3mMkLCcApXLsf3VZVGOnrp8uMHp6Acq3FKvyizLBfT6ACfJ6 iFOCZFmAEptrSla+wY1mLkOS2GsqAJsgXunHIbEcsdjnAjzoU5OIC8ZQ3Tns8LLgHw G+WGMX6qtOfHOQig1Gn4d4VQcZBp5jlHjmcDAtOL8O0Lzvby/r45twAb73fJ+kf5+E 6YAObSn5U9hOnFOoxkIm3kWATx24DmC9T0ri3a3ohesIylkuquYvJy4ka4vlzFeh0F TzDlp49sV/OrVjKJrO7GlzN/aGoWeXJ+u5brt5R1dU8L6TwYuWknjmTNh1um9MD1KW unj4NZph+yaOVB5pLUJkTQ6XgPHZFMVXdfsTjs1SE1l5WoUierMtJe33jM5v9hX/YE rgd5S9/G7J+IvwY0malOYZebii6EjLg332AB/xsDRV6hyAq3APkNSWxz9GbGXycf7b wTgq0xDxqzicwRHoxo7d9bn0JDm4D/o4/pB9OB4xgT6qBQsUGF4plz8OJ/aB7pgYQi qKKmPSZyK7o1qIQ2a8aaCrAaslXhti6Fah3lBuURWlqoycAoSfkIAqRny3wylgNlNy S07xIvWmbowie03YBKVchwYjm97UPZRgNpSXkHUOqqV3sQQfdJfnBS1kAxe/WYj9T/ bAu3JJ2l1Htr3ZPLhjPAonbw=
- In-reply-to: <CAGP6POLO-B3pv7Sjay1eR5zw+a1HasYH_AU5p=QyAYG23t5phQ@mail.gmail.com>
- Mail-followup-to: Hongyi Zhao <hongyi.zhao@gmail.com>, pari-users@pari.math.u-bordeaux.fr
- References: <CAGP6PO+=oDi7sN5M5hxmYNVQkofWcLfgSOQQKao8PMLJWpgZ9g@mail.gmail.com> <ZAye+K7t/qOKFvRN@math.u-bordeaux.fr> <CAGP6POJgNchFnJQGR3CCOnqfGiRkDQqDQu9kX4b5Sq_tZ9FLCA@mail.gmail.com> <ZA4cGZUlwP9ZF9dt@math.u-bordeaux.fr> <CAGP6PO+SaXEzXoHAAMFcAA-zQ8x6HsgpPcyTqJVK7y5_xRoZWQ@mail.gmail.com> <ZA5+6a16TifogdPq@math.u-bordeaux.fr> <CAGP6POLO-B3pv7Sjay1eR5zw+a1HasYH_AU5p=QyAYG23t5phQ@mail.gmail.com>
* Hongyi Zhao [2023-03-13 04:08]:
> But in all the above steps, I can only see that there is exactly one v
> is found.
(Up to normalization, yes.)
> So, the complete solution set of this problem is still not obtained so
> far.
It is: you get a (short) list V of potential v's; for each such v you get
a (short) list C of potential c's; and we know that the full solution set
is inside { s_{v,c}, v in V, c in C }. Where solutions attached to (a.v, a.c)
for a non-zero scalar 'a' have been grouped together by our normalization.
In this particular case, a single (v,c) is found, and works. (And the
affine hyperplane it corresponds to is given by the equation <x,v> = c.)
Cheers,
K.B.
--
Pr Karim Belabas, U. Bordeaux, Vice-président en charge du Numérique
Institut de Mathématiques de Bordeaux UMR 5251 - (+33) 05 40 00 29 77
http://www.math.u-bordeaux.fr/~kbelabas/
`