Bill Allombert on Sat, 22 Jul 2023 11:33:34 +0200
|
[Date Prev] [Date Next] [Thread Prev] [Thread Next] [Date Index] [Thread Index]
Re: Is list correct datatype for dynamically building results?
|
- To: pari-users@pari.math.u-bordeaux.fr
- Subject: Re: Is list correct datatype for dynamically building results?
- From: Bill Allombert <Bill.Allombert@math.u-bordeaux.fr>
- Date: Sat, 22 Jul 2023 11:28:52 +0200
- Arc-authentication-results: i=1; smail; arc=none
- Arc-message-signature: i=1; a=rsa-sha256; d=math.u-bordeaux.fr; s=openarc; t=1690018122; c=relaxed/relaxed; bh=hVFyu6aO3UlpBDsuLHxXAQGdkWzFHNxY+0voGlCLsv0=; h=DKIM-Signature:Date:From:To:Cc:Subject:Message-ID: Mail-Followup-To:References:MIME-Version:Content-Type: Content-Disposition:In-Reply-To; b=VhD2Go/Oqvp8uuC/OaNfP/UrideFlOwX0yWdvMKIngEsxwePTllxRiP39sje5bDXrXGHe0OeshkbT1GcYdfnd1KKzLPvwzcRWWRYdO9/zCbuzQhlyqL07ccE6x5S00AwBepskePun/2/2Ua323JVkn3DSbCGHMSfArD8HBfcp8loQVYyVMoIzlTfeSLSoyU0e6T4ibIZFK9DMxswXFABOY97YUTrDcNWHoSBi3fUgEBk6Rln6aUaJXc4RQJYfhLKeM392UqzzTKPTFpU7LrYIhpt13YkT/ed8mqjoEwz9T6eYijeT4uUcu3Mv6nUQTqBsz6SaTQsZOr2bkLbk1eb7lAJyQB7I9TO4JKjctcKB0Kek7n1CwdXSVR/C06TQ2+rBV82SLrBwTFNJ/iEk//pW/qA1kCUwl9l/mk2RNZAJbmHdOG3lOgqMuYvcKwqGwUsg9ur917uho7/i8pYiTEfnIJM0P/AIEuYuzO3OSCfiK3NRdVrOFOXsnyVeelMTeetQso2AQ/9KsKUi7ZjZYAiE3pDAHMeEfdrxxDAwcnhZsxLyYbWJf3HbyWkXmnqABHaYTUCr6tkEwq33xIIbFuEtdu0qI0o3DPLSWDacZ91e8Tt5DimGqXY1PpxEmqZX8+nkTm7ycOskGjK3hMzV6IcrJXb8rQMrb/mf58RbI3WW4k=
- Arc-seal: i=1; a=rsa-sha256; d=math.u-bordeaux.fr; s=openarc; t=1690018122; cv=none; b=viCarpi5GKinxfDDocviXcIMzwwMc3gznbVIGBLYwQj0e3tUp9kCth7kY9WheCzHYk5jmkQ0UccE9Hn5vWPh/LFnvFkLseRodU6y48FjrGpPU3pavcGxtxqMlRkljzAK65v+uLmUy/MuEzJXFxbvKHsYfRo+o6nkSLGxyjGxOLI4rZrqMiRg2rS3XKQjYII6MsmevByYTryHy+QlkaiRHQbQ8q6F0UhUx9Z/CEUdK6xzQttqCk+b+GuJHYKxmGFeUbh3n7+4HtUoWaouxlVGTGyGeriCZS4Bf9nUosBsd8qerK+5xpXqgey9zFfDfSwzGkIuoI9Q95j9B+1r9QRdONnyqQ2ey91xoEIMCvzRfg0pdV80NlmR4EMiraPX8E33u4rAnFY19KICARGMis96mIXeb2V1qrZ96/JKIZKgCV29uOu8lNSFrCtn98bM48pmwLx4U0gXIKRyPqQRSYr1vTPdRX8frUFix2lk46HChw+PLTx0yeI1ORzoOeZzGgUBRjz1qLvx/OcpQuWP1DiiwmPpoc8Q2HgIvTI/9gnb/Mu1PkkrFJFdQ7onOkkgQIG6KX0B9IT+2keXu0edSsBtK+M0PwrEbgYyLwWKf4YZBhz0WLPDMCzksl6bSVINt8hcJUINaMyxXfU308FhBqKdsTSk8VHzn0iy38dHqtZ1/Kk=
- Authentication-results: smail; arc=none
- Cc: hermann@stamm-wilbrandt.de
- Delivery-date: Sat, 22 Jul 2023 11:33:34 +0200
- Dkim-signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=math.u-bordeaux.fr; s=2022; t=1690018122; bh=hVFyu6aO3UlpBDsuLHxXAQGdkWzFHNxY+0voGlCLsv0=; h=Date:From:To:Cc:Subject:References:In-Reply-To:From; b=H55qbHjfHayO65Xa03xJtIyhlQpFgBWAjSYmXlFQ692dQfwdXSPrU6yZ/xVu+pCJs q4w/6ZvWaaeAfngSgyqFaddjOaOHvjUDe9EzxwtzLJwJfY3r4U2aq8J6Ri+HByEDp1 rmy0eT9Gtlcr3uBeVL+MklXIUB8B5KeIQTiwyoHEVo76W8/XvvrkQGiOGwGrUxRST2 16aG7Zv0Q4aTcepbfeE20acYkbTSAOPVtbNiDS7xwPsCjRsvZkavzW2pLR9TOmbA1G 7f5ttRAqd1P1K+4bcYkocT6hMjSX7Co4ZG0NzIiBk4Chsb92F44GL5OG8TB6TbByJU VhAlJMSwMOuOOUZEXInXB6S6VNA433lgfeWw+8C8m4z8HmKxV9gOwc5n1opzIa/pyg lqNcamg9CLebVLg7P+KW9/k+NvDAxeGB5N4jZ758q27IYikTXHqTarO+Oc+A7BwMlm U64JUA0/tUlf0amMMpK3wNBeiNPONbBPqh3xrH0jwXYaT3bbObkkcOWa+IrwvDJIHo 2dhHSpvypULf9tSn/6fciowMkrxsyi8W1LHxWwKNjrZqvWcNwL2xLIM3x1n8jHyv3V XJ3satR2Qu9fIsd4rGJ4aJ9vyUte6HlKR94jlREw71r1D9AEfYNkuwOpzeC4qSra4L aopFtQDjok1ynSOpQ0kM+lR4=
- In-reply-to: <ZLuGvMb7csZsxP4H@math.u-bordeaux.fr>
- Mail-followup-to: pari-users@pari.math.u-bordeaux.fr, hermann@stamm-wilbrandt.de
- References: <122c3a9fa45223f286c1969ebd95060e@stamm-wilbrandt.de> <ZLuGvMb7csZsxP4H@math.u-bordeaux.fr>
On Sat, Jul 22, 2023 at 09:35:24AM +0200, Karim Belabas wrote:
> * hermann@stamm-wilbrandt.de [2023-07-22 02:10]:
> [...]
> > Until now I used "smallest_qnr(n)" function to return smallest quadratic
> > non-residue (mod n).
> >
> > I extended definition to return c smallest quadratic non-residues:
> >
> > ? smallest_qnr(m,s=2,c=1) = {
> > l=List();
> > for(c=-c,-1,
> > forprime(t=s, oo,
> > if(kronecker(t, m)==-1,
> > listput(l,t);
> > s=t+1;
> > break()
> > )
> > )
> > );
> > l
> > };
>
> That function doesn't quite achieve what you claim. Precisely, it
> returns the smallest integers t with kronecker(t, m) = -1, which
> are the same as quadratic non residues only if m is prime.
Also even if m is prime, your function only return the smallest _prime_ quadratic
non-residues.
It is an easy result that the smallest positive quadratic non-residue is a prime number
(since at least one of its factors must be a non-residue), but it is not true for subsequent
ones, obviously.
Cheers,
Bill.