Bill Allombert on Sun, 08 Oct 2023 12:30:40 +0200
|
[Date Prev] [Date Next] [Thread Prev] [Thread Next] [Date Index] [Thread Index]
Re: efficient foursquare() and/or threesquare1m4() functions
|
- To: pari-users@pari.math.u-bordeaux.fr
- Subject: Re: efficient foursquare() and/or threesquare1m4() functions
- From: Bill Allombert <Bill.Allombert@math.u-bordeaux.fr>
- Date: Sun, 8 Oct 2023 12:30:18 +0200
- Arc-authentication-results: i=1; smail; arc=none
- Arc-message-signature: i=1; a=rsa-sha256; d=math.u-bordeaux.fr; s=openarc; t=1696761010; c=relaxed/relaxed; bh=V/Jik/7wkWFIERCqVmyAe5QUW6u0NHa/d6iJCDRVNHE=; h=DKIM-Signature:Date:From:To:Subject:Message-ID:Mail-Followup-To: References:MIME-Version:Content-Type:Content-Disposition: In-Reply-To; b=Jd/a9CC+QZzZt1Vkf9HOO341koFUQ7jWNf9aLxHsJ0nVf991weFjM7vKRkxjuUUjlht4X0lEWzIyHq+P1H4NpBgqSanIyWPr9aHYS48a1Q1BIv8IVXDtkImbsMA3i1lEEslmGSB7tVz0IfvpesnUoT9n0bpYiuHI7Q3B35em5LcqxmO+uX+2FgwgeY2GoVwWMmciB/y7+/dWo178rERoWiryZNZseH9nxdT2perckIdL6q29wlPNf6264VC8FdH3nF/nFvV4TYy7PoS/Ds2Bc0a2YIblUAbiD8Sq9DVuLeE03PZP4JRYEInAjHjilRCkMkIolDptZaukfqqAZMh5uVwdVyQtpw4dupxFBVJ2MM6qvvu8zy5pxiTPWk/+9hDVjSIiwyNFLueRCe6uQbrIXDqMtNysazSF/FJTxFjJqkSPZelixKQRyItxYKccOKfPSl6P6xer1bj6V+yTthxpF4GvPVEpOkH3dEaxjYi0EV24ZvEs7a6G/y7VWJO1SPXjSP4p44MvCGIyecrSK8+cBWDeMSPzWdd6E+FTGb93nWV3Y6l4oMev+SndJfRh7WixG0IZTpGewRAyYjo506tfUmyW6n9bEO5v6fJtlnbVRMSF5pLxJuBJ2wJnNCoRnP70/NPfS2vwi6JMfgbexD2OVfLoGqx6mTJli09GMWOJeJM=
- Arc-seal: i=1; a=rsa-sha256; d=math.u-bordeaux.fr; s=openarc; t=1696761010; cv=none; b=LTYRY+4VCKlKAN+iO26DEqMaTkNJ9XiJqNnZFZD8YiDKPSrQMdamRzzz90Jg+J5THFpg9j5KhgfiGNBZOAoIskqZKM2UwpLkqyzISKOLaJ4LkEHwoT82jGZpCMTqV7mR7ePRfR3rJq/Bs4L6uTNoBpw6Fe/kCwaz4Il9N4khVby1TTx1EeTmwUy41UrNzQb+Q19XMbnIdcKceYg8tlImZn5JPTARAzB9ITzmaRNWdZu7EQ42AyXwV/5C8/PwyggaxxR3njP9k10T3xAfkMcbAVGJWrL+sj5VOkkYnTcxlYotF98eSJcSg67vKs/1hIGsOz0IsEuO25nIe1jIZJCUJhzIiF7DqPtBkvtTeVq4hxitlRHFWPtJ9WEdAOtd7/jsdq220T1HQ9hTl5t30GROS9k2rwMVo4m0mu3YgSX1xet1G4micZoOQuIZzoMGXqQ1aNcJ5VWnRTCyL/61Hc8vXmWjImoTjO+KJ4Fwuil8m8z+tU0/BgAGTVLs7/XlM3OL4I1mX243pKLrHP14Oln1E2FOkopCcJpRXcxbxGEYCmCsGSOlsv5+8mgaIwZXhqvi1Vg+tGo4/YJCocC3khu17kt2pdD18EUzjyjqt57lTVfERZ0ctp2uoVykQ2uJ60CCxTb+qObj8wVJuoLRDBHEyfQjSL4VREX/FYBTKlcDomk=
- Authentication-results: smail; arc=none
- Delivery-date: Sun, 08 Oct 2023 12:30:40 +0200
- Dkim-signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=math.u-bordeaux.fr; s=2022; t=1696761010; bh=V/Jik/7wkWFIERCqVmyAe5QUW6u0NHa/d6iJCDRVNHE=; h=Date:From:To:Subject:References:In-Reply-To:From; b=jqZvYVUd3bhAIOPbEpjRxDyC7SVXy/eBiqcng+z3YuEdkJ2D5VmS82rdKZYl5981k Q8XOrRpjB3W9Hz8zB2yW80hN8wMFQf+XX7d3h1l7pvhty9nS0sicCZx4MmpKKR0yz6 pnmTjQsaGB1JhcvorvaX0vP+pQhuw0AZQl2DdRsxmA83dpKEPbNUujRU5BfPEQly7a BEXGMDNtrcYhhvbKP2pLbJGYD3tjjxVz5FmOVIy9BlX4CA2M9wmIKBkWA2nPoWy172 1gVPZeiH/LbejUGD+CjlbRUPuFUdSZJCAjoSWZY/K95zOCshFT7ETmiKsNpdzjlXPS 3IHpG2u51ECPSxRwc6tWV5uyYPJ6+nnkR2lKcG9xSC0YcpRffOyVyqA0gw6P91SaKx BN5CiExfkSb4DlHFx7nUI87hefJpIZvZULcF1o6I+Sh/PwP2U1kAiPaA6Y3N/jJu/N pY6XvbJANx+OL3lilnLw4FwWvR4qIUAxCT4tOCQe6soyyXnLgDTdj08GmFuugRhdMg NxfQ/3Jc5xy339P4BgHCdtfywXP2omW6ub0tHuGurGGjWzGXwcxWKtKcr7tIoye6u8 QbJf2SJqJ1pyKC3R1NMTth7Py3fKnxu/LIm0ed28cXjWAjRv2TS+hO7u9Xqa1yjjrE CgfuMwl+2qUyZQDQVCq0AMQ0=
- In-reply-to: <fee82bef0775af830ecb61b3631083f6@stamm-wilbrandt.de>
- Mail-followup-to: pari-users@pari.math.u-bordeaux.fr
- References: <d1c78430066dfb66eb8919b4cde59d9c@stamm-wilbrandt.de> <ZR/CnVFCjw69Ukyc@seventeen> <ZR/HnWWiyARDRhLM@seventeen> <ZSAT28CAqWZ+90qF@seventeen> <fd1141975cb1f0b4b488689089c0f980@stamm-wilbrandt.de> <ZSBJ5p0VR2EXTlqB@seventeen> <CAD0p0K7TTCbA7TR-4gn_peSKrGnPyDoTJ+LgeSsK9QKcC-X58g@mail.gmail.com> <26af7a392abb26df8258c64f9868d1bb@stamm-wilbrandt.de> <ZSJmCdjg4FXZvotu@seventeen> <fee82bef0775af830ecb61b3631083f6@stamm-wilbrandt.de>
On Sun, Oct 08, 2023 at 12:01:16PM +0200, hermann@stamm-wilbrandt.de wrote:
> On 2023-10-08 10:19, Bill Allombert wrote:
> > On Sun, Oct 08, 2023 at 01:25:07AM +0200, hermann@stamm-wilbrandt.de
> > wrote:
> > > Because I already implemented generation of ternary quadratic form Q
> > > for n
> > > - that represents n
> > > - and has determinant 1.
> >
> > > Now I need to figure out how to determine matrix M, such that
> > > M~*Q*M is diagonal matrix. The diagonal entries of M~*Q*M
> > > are three square representation of n.
> >
> > See qfgaussred
> >
> > Cheers,
> > Bill.
> >
> Thanks, but that matrix is not the matrix M I search for.
Yes, you need to read the documentation...
? Q=[41,50,1;50,61,0;1,0,62]
%1 = [41,50,1;50,61,0;1,0,62]
? M=qfgaussred(Q)
%2 = [41,50/41,1/41;0,1/41,-50;0,0,1]
? D=matrix(#M,#M,i,j,if(i==j,M[i,j]))
%3 = [41,0,0;0,1/41,0;0,0,1]
? R=matrix(#M,#M,i,j,if(i==j,1,M[i,j]))
%4 = [1,50/41,1/41;0,1,-50;0,0,1]
? R~*D*R == Q
%5 = 1
? R~^-1*Q*R^-1
%6 = [41,0,0;0,1/41,0;0,0,1]
Cheers,
Bill.