American Citizen on Sat, 02 Dec 2023 13:30:04 +0100 |
[Date Prev] [Date Next] [Thread Prev] [Thread Next] [Date Index] [Thread Index]
Interesting results using a NF for isogenous curves to determine possible regulator heights |
Hello all:I used a number field NF=nfinit(a^2 - 5879094002709584654188067784965) for an elliptic curve (1)
(1) [1, 0, 0, -1473670506991667240419073314040, 487857899055649012085793427889299493072289600]
which has 8 isogenous curves.Looking at the torsion points for (1) I selected x = 990529152804881 which gave the point p1 on the curve
(2) p1 = [990529152804881, Mod(1/2*a - 990529152804881/2, a^2 - 5879094002709584654188067784965)]
Using the command: vector(8,i,ellheight(ellinit(k[i],NF),p1)) where k[1..8] is the isogenous curve for (1) I was able
to create a height matrix of point p1 on all 8 curves (assuming that I didn't make a mistake)
# height 1 69.462661097568452675010358103720853484 2 68.178801124270948311447647167267142033 3 72.004467091893413430245291754771035103 4 69.211374519516486801909902481728475617 5 71.248351898944318245005414336630115533 6 70.848955458688340426113509363205938483 7 71.076540610040093288152888807161926145 8 73.995499888892081143756102359798632965This roughly corresponds to the L-series computations of regulator height + SHA and proves to me that my idea is valid. Curve #2 has the lowest regulator height and is the one to use for point searching.
= Isogenous Curves: L-series-Reg SHA= [1,0,0,-1473670506991667240419073314040,487857899055649012085793427889299493072289600] 586.0042 = [1,0,0,-1350882210032036138970816514040,604255810745174408864225385407951158557249600] 293.0021 = [1,0,0,-21613375759952551922130559714040,38675151136497269167819387070355078625642209600] 37504.2711 = [1,0,0,-76802094602026958682816514040,11216788650446842210221197792454992157249600] 2344.0169 = [1,0,0,3910584245041201096206610543960,3229366054013312573785301403224849373420037200] 18752.1356 = [1,0,0,-8822538010378633200216865972040,-9703116604031639452280171990115551185285698000] 18752.1356 = [1,0,0,4438136821871996939736684043660,-36328127880290265739543247394077097481682050860] 2400273.3547 = [1,0,0,-139665092896820718696935098515740,-635300473525359445488968869790600609112629919540] 2400273.3547
It should be noted that 5 of these 8 curves probably have SHA > 1, especially #3, but height=72+ gives us a big clue.
Randall