Ruud H.G. van Tol on Wed, 14 Feb 2024 17:16:53 +0100 |
[Date Prev] [Date Next] [Thread Prev] [Thread Next] [Date Index] [Thread Index]
Re: [Collatz] how to best derive x and T^n(x) from a parity vector |
On 2024-02-12 11:26, Bill Allombert wrote:
On Sun, Feb 11, 2024 at 09:05:58PM +0100, Ruud H.G. van Tol wrote:[...] So we can try (43, 47, 51, 55, 59, ...) and find that x = 59 works: (81 * 59 + 85) / 128 = 38So you want to solve 3^4 * x + 85 = 0 [mod 2^7] ? You can do ? -Mod(85,2^7)/3^4 %1 = Mod(59,128) Or even ? -85/81%128 %2 = 59
Thanks, that made me do: ? ok(n) = {my(b=binary(n), x=1); for(i=1, #b, if(b[i], x*=3/2, x/=2); x<1 && i<#b && return(0)); x<=1;
} ? show(n) = { my(b=binary(n), x=1, k=0, t=0, f="%3s + i*2^%2s -> %3s + i*3^%2s"); n>0 || return(strprintf(f,2,1,1,0)); for(i=1, #b, if(b[i], x*=3/2;k=(3*k+1)/2;t++, x/=2;k/=2)); my(v2=-numerator(k)/3^t%2^#b, v3=v2*3^t/2^#b+k); strprintf(f, v2, #b, v3, t); } ? [ print(show(n)) |n<-[0..2^7], ok(n) ]; 2 + i*2^ 1 -> 1 + i*3^ 0 1 + i*2^ 2 -> 1 + i*3^ 1 3 + i*2^ 4 -> 2 + i*3^ 2 11 + i*2^ 5 -> 10 + i*3^ 3 23 + i*2^ 5 -> 20 + i*3^ 3 59 + i*2^ 7 -> 38 + i*3^ 4 7 + i*2^ 7 -> 5 + i*3^ 4 15 + i*2^ 7 -> 10 + i*3^ 4 -- Ruud