Bill Allombert on Wed, 28 Feb 2024 16:39:32 +0100
|
[Date Prev] [Date Next] [Thread Prev] [Thread Next] [Date Index] [Thread Index]
- To: pari-users@pari.math.u-bordeaux.fr
- Subject: Re: foursquares.gp
- From: Bill Allombert <Bill.Allombert@math.u-bordeaux.fr>
- Date: Wed, 28 Feb 2024 16:39:11 +0100
- Arc-authentication-results: i=1; smail; arc=none
- Arc-message-signature: i=1; a=rsa-sha256; d=math.u-bordeaux.fr; s=openarc; t=1709134754; c=relaxed/relaxed; bh=/Fwr1d0/U81/s0g5QIbLxZgoph7lkqUzuV7ylcP4czc=; h=DKIM-Signature:Date:From:To:Subject:Message-ID:Mail-Followup-To: References:MIME-Version:Content-Type:Content-Disposition: In-Reply-To; b=s7I2mPpMhgv0ERwHYIRq+8HgL8Y3qqAp7GNxX+eJ9/MaFfhk5zQdFMWiRiXfpcoQBX6qMPoqR9Ji3/y8dIZ2SVALQ5M7HnfGdp+1j/xnsoP4PulPqozAOamwKphqwM0wE1SbusnEI8GVOSnr7/tq4HbNPry4lCE097i1KtbwzHuXB52wxC0vo1nrZzlcrEmrH8c3e2GkRVE3Oof9TlwRPYztZsRDDYeFQcnoiZemV7eHeWTno3eM3zjbBpU0mzgrBVEMGGtRgagGAAzZqnZKZYsBDFitR9aTaSPq4KU3DzUfZjbRLs/05wox99SI6oSwltPp8UXREGCKfT68keTwIrV3vAzK8Mb1ChDFYEBWGsto6s+R3u4jsaYezMyGRuIG4F0IuGTlO4N0n1ylHceo12JgPD3382uKqm/3+2HkbY3OqIloAwKFUeuL/E++8zcaMa2IJ1Lw/kpqMuYlHN9EhptWpTBPnX0PZT82fA9zzgtVeB8y36TL011BelxgQkVmlxLy4m11BR58OZ5CC1Dt0KKwn/KAgPPoFT0e5zPqn065ftGd7WpV6Vch7XxkVI2aZmWSKr1nFA7FNedETUMzkut3Hy8Deaas9TjKjQftLLukXfKmVtjx4R7XewQ59fNaWVpld4Be9NwHyriLUzPNa36qE0631Pl41RMkkta5va8=
- Arc-seal: i=1; a=rsa-sha256; d=math.u-bordeaux.fr; s=openarc; t=1709134754; cv=none; b=kfLU4VCV+M7JM8wJPzsagI+q8iOOESPsFGTlVsvherpvY/jLJDdm6Gm1/IPGJjl7PzB6i5WL7ebYSvWiji+35vK2Z1xEzxgwnAeHdFLvxqP6iO6ALCS1xXYD+aWZf5+Nqp4LcotViv6eX4NTG99D9mujO4JRjxdppSIEDuPR4OpTLbkPKy1Cy/3iY23s86U/EKLpd07ogR3oolsiiYRINkbaiSLJ3TAk+PWjqoMM1fAtYJxNzTeBZULRDgsMQerEdfRZGPz1trZjNJavq0P9LHqbhDfEIAa+Y4oiXM0ZkLF/T/xFvtiberidHZVG/nOKjYOe/AgBDYJjaNVw5u4iEL2riL73LJdVIl2adTA25fWtpqc1yrD7lqWroFHrlJYNbNs/F1INj+l/CTGt614RenRZgGctaGCL7Wjcc0rBGbnGAgJFu6EHbO5tm3+//JSp8Rw2zK07YT5+Tum2Ly3sTX7s375W8VLvbpbb7PCWFAfPy/zCLn2EoiMBXDpd7KDF9EnL6re7IIO41Y0bqGVNEru2Yw+kf9NHHg4rGp/Zeymm/btcnfobKM9H9IThLjAKXQcqeHbODcDMP3he4338xPUyMlcBY9PKPzBopwvAJlPljbH9fkRHnA9T8zWMd6MURxpLkTu/7sOPLQPChNfiMN0W9GXTvWw9jMrQQ+vWKeA=
- Authentication-results: smail; dmarc=none header.from=math.u-bordeaux.fr
- Authentication-results: smail; arc=none
- Delivery-date: Wed, 28 Feb 2024 16:39:32 +0100
- Dkim-signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=math.u-bordeaux.fr; s=2022; t=1709134754; bh=/Fwr1d0/U81/s0g5QIbLxZgoph7lkqUzuV7ylcP4czc=; h=Date:From:To:Subject:References:In-Reply-To:From; b=E/3PldIx4QUyn954gzzEoJF9Io63f7Th5wtulnaiLEn7TkuizCme0TZvMy3lv4r6Y 6WCJiuipFNplZWLhpyINBNOPILXeTh0xlXAJMioAFRVrbiN4UxZGweJ5xCZ0tSZLK9 e24tsD3eN+SO5ATTPFXoDDdPxtv/CJX3EH1/X84Gtp5fu59WybQW9I3eFmjRl45F3+ LFJlZMSl25SRvx0zZgQVhtDKLJMf8cVpAzV9aqm9+lunJC5z6UC5+UGnxzYZfO1ZjL MdXR7ZR/LCW++zFh5yFLTgtMZb2lYUObFafnuSGyFOwnu3V7sAXdOOTHADGBQK6AX/ 0tGvJIxX8/YUObdpnOo4Y6HRZeeKhBDoaARiAPAxg8/1Wl/Pgo0Oo7IFHPOL3R9Y9T fbip3nziCIslObn7JFQxPymbMxQ7pU0PhkBO8/CR8YJEybQU8Lvuao+YczDJkRbuNn E4y+6ZxyLzJRpBfMUPUPJxVBUEGOD+mRTa9Vjpt+QQwABjUQNvhEVILdmMdeemYvHR MJxbBzLiwUfAu/3oDVjVWtd8vSb0bsMjn+Jq1kabK7i90rQ8MAZyyGy6P7MrL4/A9F 4SxGgUi3J0eQ+nbkOp/nwrHGZwp/mQtDPktZu8av2IPCIQ9ueXllwbP2iYZzMTs0OC 2DkNdW5rQDrVNyZ3kPGZOQvY=
- In-reply-to: <67f1e4185522e98bee23dc7b54f9b7b3@stamm-wilbrandt.de>
- Mail-followup-to: pari-users@pari.math.u-bordeaux.fr
- References: <207df5ff21dfc8de891eabc538a770c5@stamm-wilbrandt.de> <67f1e4185522e98bee23dc7b54f9b7b3@stamm-wilbrandt.de>
On Wed, Feb 28, 2024 at 10:01:02AM +0100, hermann@stamm-wilbrandt.de wrote:
> On 2023-11-19 00:28, hermann@stamm-wilbrandt.de wrote:
> > Bill did develop and tuned foursquares.gp based on this thread:
> > https://pari.math.u-bordeaux.fr/archives/pari-users-2310/msg00003.html
> >
> > You can find foursquares.gp in contributed GP scripts section:
> > https://pari.math.u-bordeaux.fr/Scripts/
> > https://pari.math.u-bordeaux.fr/Scripts/foursquares.gp
> >
> Just saw (interesting) discussion
> "Fermat's 12th composite part as sum of two squares"
> in "mersenneforum.org->Fun Stuff->Puzzles":
> https://mersenneforum.org/showthread.php?t=29344
>
> F_12 (2^2^12+1) has 6 known factors, and the composite part has 1133 decimal
> digits.
> Alpertron used his calculator to provide one sum of two squares
> representation.
Another way to state it is to say that one knows one square root of -1 modulo
the composite (the square root is 2^2^11) so we need another one to factor N.
N = (2^2^12+1)/114689/26017793/63766529/190274191361/1256132134125569/568630647535356955169033410940867804839360742060818433;
A = gcd(2^2^11 + I,N);
? norm(A)==N
%16 = 1
? real(A)
%17 = 200632848085394229198405077309776409669556160755822894920478194045891524675173877582799789843512719390209285348887171584058267613825062519170949236869832740299611688879431491248560122275125138227835639875304442149679485916420376715785002453587853905329008047468218821526665318251417289791164787502264540469658007753188396466487968753988674615092615847790001421479841641921279595503860736218792224235350272376658369292603790019796500735806899786991660195728966759044116399240680328117271881207382080232786405040556863376322477213246700048245459183343930058344600346916
? imag(A)
%18 = 11512882899820054257144225772505994511430981968359355559240636997087397239461885404688940982112272498773691260355731224763278685518244745544198267923163368736091123701779226072209279679342867029500044275233215203437226071842172804234583591297137729569486761340213325710137879698831126615998659706343950808674850862574868322314902443424081205544133789500128645355501388833990928089030944977862262874243179626287736961093227838096073086612878632276868708056678373714902078426666851025890207418013027573248367464970951431311736356210867866665430397629513384884406535591
Cheers,
Bill.