Bill Allombert on Wed, 17 Apr 2024 19:49:50 +0200
|
[Date Prev] [Date Next] [Thread Prev] [Thread Next] [Date Index] [Thread Index]
Re: another simple question
|
- To: pari-users@pari.math.u-bordeaux.fr
- Subject: Re: another simple question
- From: Bill Allombert <Bill.Allombert@math.u-bordeaux.fr>
- Date: Wed, 17 Apr 2024 19:49:45 +0200
- Arc-authentication-results: i=1; smail; arc=none
- Arc-message-signature: i=1; a=rsa-sha256; d=math.u-bordeaux.fr; s=openarc; t=1713376186; c=relaxed/relaxed; bh=4fd+Yi2y+svSBbuaEtozy4HrVsi04kaCt7UXZvrW65o=; h=DKIM-Signature:Date:From:To:Subject:Message-ID:Mail-Followup-To: References:MIME-Version:Content-Type:Content-Disposition: In-Reply-To; b=rv+SYfsIvaqXc4jHkWUVBnnR+xur0bD7WuJEXp0zixUa9M6Z28MDrRBHOwhY4RlBbJtk5Q6up0kSyLtPYLH8anRxqoFCin304U7I1X5qqOjiHvLnI5kKaDBE7zK75By1qrUadSMqa9UM22a7zNDkvD4vAYZbanoshcYrPdOrsAbtiIYEnhm1gTnEjzfXoiV3IGZGJXtXaSKyRnuYSHcoW8syZ53iLZxSQfvt76WtmF+EwrwTPomyUcEYN32Zdht4ndei9LZuvc7tORdvb3ZVCnFgXqNPYBcucZ+kgnQQzsW9Wh2gtDQz1edWElltZND3UjvtIakJGB5Uz99SZR/JIc62EbPPfL0lm1/HUwpchI72AlXOgmFiNq/NQecYCcqC2WWPXS+FVgJrOTeFjSotzLddO0PvPhAOCrrcIDZjsE3jsyhY2JiyQJLtgDhNGKg1zrF5iJlRxm2rUyNDF3eIx7rr0aACmEJ1eXLhqNdPgO2ony3/cKZSWGuCfZF4Hwni4ny7eRheiCt0RmGB7t0ZidLjogunyPM2Tgcl0xrk0ygnZLRP6BDK1b+I4WyuJANNSWSYFO67AxQq5DB0FpCuEVW87Le5j4M2gmgtCstFgR0koK/JFizMIpwEVoqNy34iAu6RtpP2vpaKEidmsq3dRNuhHdAHzEMA58hJBTcao6w=
- Arc-seal: i=1; a=rsa-sha256; d=math.u-bordeaux.fr; s=openarc; t=1713376186; cv=none; b=gcS1YLb8Y6uJBHEdwY3cakiFWyYBgwXVrOA+6lqnUG2GgPZw/C/iSxYQjIUDVCSBFLstMBWmqv0uqcTorHcPJ1kFFkOZCtWu+SL4tIjLmvuSmVpr1R07yzDfWSiAB+oBW4zHu1D3o5OhMWcT6mIccWsfjwKgslAao7I4UiZKFefceLEgmTsr1gcxSAE6EKs9YTSXvxn8oC/jZHDiMDJmAIKbnrb6Zj5E0UjIUZ05EBmv0rda6rUS81IwcQNnsHp8RQAt2WW+PhnVwzs0+kaRuJH0i323GOxSJzZZZAvNrKn84pwYf6d0AJibkniu01y8ZFk8fbjIfV/FKW9xlVjXgyVTxBgaggQmf24K2rJ3L4QT0qTgg42yNsJgUdeVz7ndmDaWlNN78LOQ43r54PUDuQcZCpGyxNcXgwyFsKP7gj/MKRaSavsqnXVfyOQoRKB5Z1Tdrp97v/q3orMNxhwJTqWQ0AK53mu+ZHtxWv8EnnUFZHkRaUr+z5dMx1VaTna5JXoImLF1Q51sY5VKGq1+e1sMCc1/nch4v8c86lAw92UvMzeaGds0zhSQUiw38PbZLlCIabFh9MzCGv5vubsicjdG/yQ0IJCZWcAWcHiJbleIDLqEA2/0h3x4zB4lshjJdSmiThyTxMic2ZL/Q+/nx2ySmM7y93D72jndTf8dp3I=
- Authentication-results: smail; dmarc=none header.from=math.u-bordeaux.fr
- Authentication-results: smail; arc=none
- Delivery-date: Wed, 17 Apr 2024 19:49:50 +0200
- Dkim-signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=math.u-bordeaux.fr; s=2022; t=1713376186; bh=4fd+Yi2y+svSBbuaEtozy4HrVsi04kaCt7UXZvrW65o=; h=Date:From:To:Subject:References:In-Reply-To:From; b=IhHx3buw5ph9QTC0RwuQ+LPdpIbcQ0nrp/KJekml4EeQvWF1NORSyjUOfR8jC0btK eDJt8TblaQxF7+YtmO2PPck1SKP/Tjg+6cSeCY2Wl57WCINxbMUBZCaaZq1aJLWt3U oI2OCkQTPfaHVXOw6hsWvAhaib9lq0YFB1PF49KsbRj4aGRcf/e2bjrMyz6AG68pRT OYUV6sVKdNQsraxO7wt4bug08aaThxtONo0rj8gFg0CuqufS5dW1wrJ/lLTvOJduHj tV970TZwe6XI2SKUXXd0uUq1MgGs8bbdVMZaYe8dTx6uJBuoGJkBMUjDPHEhdkzCtv 3uKqxyRvbztnd1pDqe+H31binni0eTMHsG0vuB+k819kB2iTtXV6Q02YjqGFJsFMvU zZqHDZAy492VAxR+eV8Abelp0Qb0/aHfpyVMvMSfYSWAxDUkZqH54xs6eTwPDbeiXE gwux0GNHL2GNuJ5lUi/d/Mc035AKxY9O7M9B9+lLX8Y8wwiI4j50IyTOFQ75aPTEMW IWMT0WO8Hfy+enPi+0TjNp6B2sVdDVctIG6btsHRIv2l6YKRq4Z0TIU0LLdDzj7ipx ZHKuiZ+WTcmd1g7Jc/a3aEaXE4sUbdZol//qjffwkZRcNGXoOvx7o7yTC6tEkHJ4Xn ZM51nha7bT6hYKxCfXmY1dIY=
- In-reply-to: <900111df-c04b-4cf2-917a-88733c49c2e3@gmail.com>
- Mail-followup-to: pari-users@pari.math.u-bordeaux.fr
- References: <900111df-c04b-4cf2-917a-88733c49c2e3@gmail.com>
On Tue, Apr 16, 2024 at 08:45:40PM -0700, American Citizen wrote:
> Recently, we saw a point with thousands of digits posted with the question,
> what elliptic curve might have this point?
>
> The answer was to use lindep to determine the elliptic curve, and so
> everything went fine.
>
> However, I am dubious that this general approach using lindep on [y^2, xy,
> y, x^3, x^2, x, 1] will work when we have points of lesser heights.
>
> Suppose we have the point [1/2, 5/8] ??
Well, your example is interesting, since there is no elliptic curve in Weierstrass
form with integral coefficient having this exact point!
In any case, once you have found a small non-torsion point, it is easy enough to
find a bigger one, so that the curve can be identified without doubt.
But I apologize to have caused confusion with my little game.
The question I expected you to ask was, how did I found such a large point
on a curve with such a large conductor ?
The answer is: by adapting Monsky/Robatino method to twists of the curve 11a1.
So thanks again for pointing me to Robatino thesis.
Cheers,
Bill.