Charles Greathouse on Tue, 23 Apr 2024 14:05:08 +0200
[
Date Prev
] [
Date Next
] [
Thread Prev
] [
Thread Next
] [
Date Index
] [
Thread Index
]
Computing Sathe-Selberg
To
:
pari-users@pari.math.u-bordeaux.fr
Subject
: Computing Sathe-Selberg
From
: Charles Greathouse <
crgreathouse@gmail.com
>
Date
: Tue, 23 Apr 2024 08:04:33 -0400
Delivery-date
: Tue, 23 Apr 2024 14:05:09 +0200
Dkim-signature
: v=1; a=rsa-sha256; c=relaxed/relaxed; d=gmail.com; s=20230601; t=1713873901; x=1714478701; darn=pari.math.u-bordeaux.fr; h=to:subject:message-id:date:from:mime-version:from:to:cc:subject :date:message-id:reply-to; bh=eMv6HDG1f908eQRhsMQC3qawmOxwilSolxfQekjLBqc=; b=nIP+jY8+i/2195enj2jaPcuz9RRMxhgZSGpafmRQap1QzgNtypNzPHpZUr58BNTqrE D9vs2D4l7YxXEK9WbH6kLR9dQu+BhvLlzqc3U8jkhVDZZR699j0PyCSGKpyazscelCUF ysLA/7FavteCmyCPeBFH5EcXbcvlrq+F8Ue05jYyYBKtr/5gC2Px9qoa4OmYkHaN2XxN vZfck5Mk5ImA+VdRRMPMiG1sHp43yPxnYAmSqhUj2cJmG1dHrX4Ii+gMR3Ap2TLH9rrq HHEy1+dwlXYGUIbpZxXqgbWxpGCXa6bd2ZNExxHs+T65dwgA8i7qWg5H34B9CpGxLoWK NVsw==
The Sathe-Selberg theorem uses a function G to improve the range of the classical Landau estimates for the density of k-almost primes. It is an infinite product over primes; its truncation is
G(z,lim=1e4)=prodeuler(p=2,lim,(1+z/p)*(1.-1/p)^z)/gamma(z+1)
What is a better way to compute this?
Follow-Ups
:
Re: Computing Sathe-Selberg
From:
Bill Allombert <Bill.Allombert@math.u-bordeaux.fr>
question on trouble shooting gp pari sessions which suddenly quit running
From:
American Citizen <website.reader3@gmail.com>
Prev by Date:
Re: another simple question
Next by Date:
Re: Computing Sathe-Selberg
Previous by thread:
Re: another simple question
Next by thread:
Re: Computing Sathe-Selberg
Index(es):
Date
Thread