Bill Allombert on Tue, 04 Jun 2024 22:20:31 +0200
|
[Date Prev] [Date Next] [Thread Prev] [Thread Next] [Date Index] [Thread Index]
Re: Question on elliptic curves with same conductor and Diophantine triples
|
- To: pari-users@pari.math.u-bordeaux.fr
- Subject: Re: Question on elliptic curves with same conductor and Diophantine triples
- From: Bill Allombert <Bill.Allombert@math.u-bordeaux.fr>
- Date: Tue, 4 Jun 2024 22:20:14 +0200
- Arc-authentication-results: i=1; smail; arc=none
- Arc-message-signature: i=1; a=rsa-sha256; d=math.u-bordeaux.fr; s=openarc; t=1717532422; c=relaxed/relaxed; bh=NsI5zORciqeczeGy+lRyKtOyDGFMki/rDQBMKJ8ccWU=; h=DKIM-Signature:Date:From:To:Subject:Message-ID:Mail-Followup-To: References:MIME-Version:Content-Type:Content-Disposition: Content-Transfer-Encoding:In-Reply-To; b=C3b1jr7rzJeczIoKWTZ/5A3TYwyAbmM9rdBL9b0zQ9f0BsBejge1Bh4si6rrghe9446/WKSHyS+s3AmprVFBOOPeycwTdueCiJZBSQDf+6JEzTAhhClr4RyJz1APmtuIp/LWw0NT5ww1P3SIYSDLufplQzSnibd7oguyBuj7OaQuVybzocpiG8PtaPOAaKzTnfrRg8Bj2vBe/qhdcUHXD7IAbN65JIRqWl+iA1KxeMmIAPkNcrtN/rg8HU7fQ/gQ2Yn6axaW2S6ZC9MPqoXMmoKEVTKU3W7F6HnoAuT1Vi/hQxvG+q2gD1jeN2mxM6augo8vD7BaSlhCV/g2YF7P2ljI6LJxdamYRlyA6djQzY4Zs7S9Kh1zlM+idts7x5N6rzoXnf7DpE06cH86Y4G8yJY7lmVs7mLrLpHFsc6EIuES1NEdjrdzPz5tvG7W2BcQv3DiyzUmNZ1Z0oJRltEv8Wvd83M2ronc48IwkXhgOS8EmSyhbe5YgcHl9z5y+BP929QLjH0t4Do5splr7Sd4a8t2GMnWGUU43H06zBu/AG2gRKmrifTRaLuY/bua5ngxJNd5TD6yxUmUk/KdjOSx3EMxotbz5HQVLUMauk94qU3XaQWv9Q+niqz9W3dLa6p8x1OprP55ZBfnTvvaQSrcLBw1S2faFhHZyTYt7VJEfMs=
- Arc-seal: i=1; a=rsa-sha256; d=math.u-bordeaux.fr; s=openarc; t=1717532422; cv=none; b=vQYTX3ERN14/zil0nI9id+WRhuMldilKUUlJtaxkm3IJhgiV0x2rNg9wvxZGSiweuIM0MHDI8o+QlXX/d5dvciy8Yz7V7KUm9dlnwVhMvtgAUiaONtk7/qai+DGBoaB3kHpPIfrfWy0pqYCDIBvWrB5EyiTV/Jp6CafxOt1Fg0fTDerwMuTrzWxMXHacucmk4Q3nUtWK1A+r69TNgHFATkOqH7ZUyLql5E4A0yWcA7+9Z4oCxgvq2ol6umZOTzzfIt8gbajU1KpD5tNGxdlsFEBmHueGbmwzSeNdG/PMs/FLuGrDSKJe+8nc3pniIsqt7VLpMbaa1/nc6kEqq4T4zuUB9SQPEKeb9CRDxdPn2GT/jMZ+HRwudhnKuzlfBcpmAnn2tjs4TBhI5DTefwJWVKhlo6vBDVxUrGhNOIkNlEKpt05OoQsfZPq/YEc4gvnNOXXXJ13RG8rZaowteI9CDC+qTmpEuzDLNCjxXB6mY+39k2MvNrVQKgUJU/RDTdh0aZkzZS291pBP9q9XgRRtlyAOKTke7vE0/1pampaa+2eNI549XmoMGZ0s4l2kUFUdhCntVAi9JmHtcwaDXVvoKid/G8JHNU84eIwq7ZGVaWSrAX82c7uSnoHOduxiJE1asYqlKU0PmBuRK6GZSdAnZiH79KB1Bj1QOFiZqG+Y+J4=
- Authentication-results: smail; dmarc=none header.from=math.u-bordeaux.fr
- Authentication-results: smail; arc=none
- Delivery-date: Tue, 04 Jun 2024 22:20:31 +0200
- Dkim-signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=math.u-bordeaux.fr; s=2022; t=1717532422; bh=NsI5zORciqeczeGy+lRyKtOyDGFMki/rDQBMKJ8ccWU=; h=Date:From:To:Subject:References:In-Reply-To:From; b=CMMj0lQ/Hf1tjPTd8VEn+l/4dnrP2KD3hYrC9KE61ZBFqiffEvI/7gNbe5MqYczb8 BQoH1pq4Zaf5ecDxPeugDRc52myzrHoG8V/kcQdRYN+mkpbNTgTc9dQoP1zwj7tUJJ RY1S4x7+/sCuZNlxSapWUxH4qKUb3YsasZmPa1F+1oYYh5CXJznw3b2GCe8JWunsCC NBNa2AlHfBo3cC+J6jowgPLIFYsB5WPlqaDEZi4zKxoWa4gY4vF4qny/yTJ1LiV3O/ 9dzp/UrRZKQMRVaH+0pJDV2dfH2q3cqt1jymBircyfF9RF0y7XMiA1mM+xLyoC+oVt 2TKFdjUBGcjEhJjGv+bxRbYrtXb2R6LttXrM9v4LCnoyEZhokAf6hqjnrjg5GcPMWz lFojvAM4gdw+NocaI3Vmxlr/7CN2g8Rp2LOXDpA8qJOQ2DkBHo4mqWcduejoIjVrkb 4yZYNc1VTXoFaYRvfC2ZeQlxWizv1bEARGh7l/siET0EbbpRISL8OLo+Drvu+zocoj FBE0zxMfeJcif2rMItq+lKsAsRW8yFuWRE176fh0CPjzgLsxawAHIyzbF3f3/8CnZj 3wK9oZUguNfmHTcZxhKRG5v9LzjEr3/Ei0BrKn98C5gpRGX/wb5HBHbnpT1eKkB7M/ qWIfdp0ItG5xoykZAIoIK6GE=
- In-reply-to: <68114d5f-1345-405a-ad5d-756c6d09c53b@gmail.com>
- Mail-followup-to: pari-users@pari.math.u-bordeaux.fr
- References: <68114d5f-1345-405a-ad5d-756c6d09c53b@gmail.com>
On Tue, Jun 04, 2024 at 12:46:05PM -0700, American Citizen wrote:
> Example 1
>
> conductor elliptic curve Diophantine Triple
> 31141110 [0, -208619/396900, 0, -36542/33075, 7744/11025] [35/36, -27/35,
> 352/315]
> 31141110 [0, 868006/38025, 0, 1646161/38025, 559504/38025] [12/65, 143/60,
> 340/39]
>
> Example 2
>
> conductor elliptic curve Diophantine Triple
> 116867520 [0, 278088/4844401, 0, -11768632283520/23468221048801,
> 296284262400/23468221048801] [40/9, 162/961, -756/5041]
> 116867520 [0, 952/9, 0, 6765440/2187,
> 11907174400/531441] [22/9, 40/9, 124/9]
>
> Please notice that in the second example the two triples contain a common
> 40/9 tuple.
>
> 2. Given one triple [a,b,c] can we find another triple [d,e,f] associated
> with the same minimal elliptic curve? This process is essentially generating
> other elliptic curves with the same conductor but from other Diophantine
> triples.
>
> Please bear in mind that the Diophantine relationship (1) has to satisfied
> in any triple we find.
One you can do is to use the invariants c4 and c6.
Two curves are isomorphic if ad only if they have same same covariants
c4, c6 up to to some multiplier u^4 resp. u^6.
? F=ellinit(E(a,b,c));
? F.c4
%19 = (16*b^2-16*c*b+16*c^2)*a^2+(-16*c*b^2-16*c^2*b)*a+16*c^2*b^2
? F.c6
%20 = (-64*b^3+96*c*b^2+96*c^2*b-64*c^3)*a^3+(96*c*b^3-384*c^2*b^2+96*c^3*b)*a^2+(96*c^2*b^3+96*c^3*b^2)*a-64*c^3*b^3
Now find you need to find a second triplet (aa,bb,cc) so that
ellinit(E(aa,bb,cc)) has the same invariant up to u^4 resp u^6 for some u.
For example for your second example.
? F1=ellinit(E(40/9, 162/961, -756/5041));
? F2=ellinit(E(22/9, 40/9, 124/9));
? ellisisom(F1,F2)
%61 = [369/2201,4708240/4844401,0,0]
? ispower(F1.c4/F2.c4,4,&u4);u4
%57 = 369/2201
? ispower(F1.c6/F2.c6,6,&u6);u6
%58 = 369/2201
Cheers,
Bill.