Bill Allombert on Fri, 28 Jun 2024 22:27:49 +0200
|
[Date Prev] [Date Next] [Thread Prev] [Thread Next] [Date Index] [Thread Index]
Re: Game: find the series
|
- To: pari-users@pari.math.u-bordeaux.fr
- Subject: Re: Game: find the series
- From: Bill Allombert <Bill.Allombert@math.u-bordeaux.fr>
- Date: Fri, 28 Jun 2024 22:27:44 +0200
- Arc-authentication-results: i=1; smail; arc=none
- Arc-message-signature: i=1; a=rsa-sha256; d=math.u-bordeaux.fr; s=openarc; t=1719606466; c=relaxed/relaxed; bh=PyaQzGMOM9q0Ss27psDjJ16SOcuC/zOxFXysyP2fSLQ=; h=DKIM-Signature:Date:From:To:Subject:Message-ID:Mail-Followup-To: References:MIME-Version:Content-Type:Content-Disposition: In-Reply-To; b=DVYI/J0ieDUrH+S+icz0cjxVhXnLRCJ3jRthsHDMVT+awudMh5OVelLYYfeQEjCMFp/rdQqKeWrKXZO/D++bm/ywEpgEvT7D5FGdwt808MS02fHXJ2kbYpmpdjFk43oESnFiRdPn3kVUBK80IM6rFJdorWTS2DL5PQiUOgxEIDrNnlPvBcxitDbN/qaCOsuMvaItidoHqDai46g5MNN76D8wby4ee5VOLroqDZ/QcScwataYvFRYcDpTtwGuQKKnusTgdk4srF+rxTX7Kkd18YaDVis7gVJd0myou/A55QQ+wrCZnbxGBtOXUieEnsKi6fQ/I6ezhmTLdebOzk3REFmTQ2PqfGhBrNlrpxesdDfp/71HS1SzH2VUriptyPySLZE0RGYd94J+7dJspP0/qtv4zRILOue91eQ885j2fvw7OQkQJ6KzcQET/kDJjb1hHicRHGSsOlCDYHWa8F1bL0azsc78B8YU05P4z9391S0laL4HAQ7PISBmB8CkA+ZOyXlfhnWC1/Gp9h2K9NTMRcxpaLNqAI23/RqR/kK9ufxeQSWe2YXsx9KlGBuc5T/VjzJRRckPPyHIHMLoX8+i4u6/OMkxvO8/3moo2Rb4Du6gXXQJkQQGBQUy32qAb8kHqg4UiSRgSCBTxoQYuf64HO8S27kpKA+KYry7PU0CnOg=
- Arc-seal: i=1; a=rsa-sha256; d=math.u-bordeaux.fr; s=openarc; t=1719606466; cv=none; b=B2GzfPiAg4jKqmxTdn8ysFgqqTVZDEQuVUm4BqUTKBGFzWroctZ2yAnqpOfSUd9O2CttowcpoV77j3CUznbqaiWzowAmb2NqSRK6ZhsFxg41xpsJLvTePrvMhgapcRlBpom7ZV+sfz71IUmzvoVNbKcgHH67zkIWjrDGBZpjYc7N4GryjBoomWyojud2S3wdOu5H7eJoa5zNKpmr7r5Xg/AVLylRK4DUcdoz2qDAWqT5h0ynD17/RdE1XCPGLsjPiQRPL4iO1SdA2VZWzyi2SeOmU+tBnB+YckHiSlTKvvcXQGiZ4j8vtdlIV7Ddxucn89ciKizBLZhwy/n1JqHZERq5PBB8Te5bmVt5bHVgZCGIRg/a5rO9x6Zq2zQsJmBy1xt2RwybBHJdp2hy9eJF5dnqMPM14Co4NXTNwK6WHtYG+y+rhn47Ztd2f6Hru0ESw4j/0gW8fnDA1APjq+wR5Y0piLF6jE2g2rMiQWnzi9Ius8L3tZPo+BtLrafS0qo6GtK9OUOuLMMzJ/qDhKgWBCgvaiGdTOOCs/EQH+hRVgYbzc4yNcxFzWhHQuvqRV5M7dC/Ary0LBAtwJjixxJw7zUxWECVy+o6dGU2tLuO/rDNRvWsLWTOSaWuxI6WAHFI9RNrmkQcFRHK8BIcktkeuJGuNJrfyKNKdYTIvIoj0ko=
- Authentication-results: smail; dmarc=none header.from=math.u-bordeaux.fr
- Authentication-results: smail; arc=none
- Delivery-date: Fri, 28 Jun 2024 22:27:49 +0200
- Dkim-signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=math.u-bordeaux.fr; s=2022; t=1719606466; bh=PyaQzGMOM9q0Ss27psDjJ16SOcuC/zOxFXysyP2fSLQ=; h=Date:From:To:Subject:References:In-Reply-To:From; b=ILnvGS4/GPg4b1mBY68DhIDAWmEd5eoOIm8KLa3bjhHwtkf02ov66DmJxo7bVO8Uq 5UM6GqO8EbNlGUc/RJS5i/s88K+np2q9O2QKMhlrVrlA+7QxZQUJUA4HxeOZh9S2K6 1PsbD2ZJVgRvvxi+xGJMRhabWZOm1iET17uia5GQcWs4CZDbMuqKXlaUmAQxsLrtaf 2+FmXE5BMynS96vBJemf45Kj4BQh6yWe3XWI2UsdKU5U+Uqk2d8wH4Xq6fYNt1CbCB YnOJo7G+iAcqx7NjL/w406DZghHVsOnL3OoahZJq3Aii6ZNGplfrHEyUx4p8kaUnpU NFV7aFK/LK4q4wweaceN1yuYrZGcSb6UVIb5y71vcO3EdnYzcKPcqBhNaTy6eb59jV REAL1MWODlOoXQX/7yyalST+143GOy+jyiBdC7I+v0l4i+jL6Mj/yyeFhAA9c7bTPV lINMejYUlor1qB/aBOYDQc7SewxPrfJyVgljDY6As/iGJ69rfglLrzW3LbtMTbK2IS mdM6n79OXF4jzVoWG2IdpnHjvozQ5tonrUvDzcdiSFe45T/WhpzbGTxQIZ9FHYQu/q KSXgOiTNGpmiKNgOzMOM4yBTHtjfeNO27fNWLPL0hipVwfTkTS89z49MMzt8ZQqCGx zWP+0JZmM3/5h52EzafuItjI=
- In-reply-to: <B312C735-05EA-4F37-AE41-E4F679D007D5@earthlink.net>
- Mail-followup-to: pari-users@pari.math.u-bordeaux.fr
- References: <ZmNk-TQX_VWRxhRE@seventeen> <CAJkPp5PLRv85ROKS+enN1uOL5fMBHX-q_NtixCBiCMQjxYArAQ@mail.gmail.com> <B312C735-05EA-4F37-AE41-E4F679D007D5@earthlink.net>
On Tue, Jun 11, 2024 at 06:37:12AM -0500, Kurt Foster wrote:
> On Jun 8, 2024, at 11:41 AM, Max Alekseyev wrote:
>
> > Raising to the power x, we have S = (1+S)^x.
> > Letting x -> 0, we conclude that S = 1 + x*T for some power series x.
> > Taking logarithm, we then have
> > log(1 + x*T) = x*log(2 + x*T) = x*log(2) + x*log(1+x*T/2)
> > That is, we have the power series identity
> > x*log(2) + Sum_{k>=1} (-1)^(k-1) * x^k * T^k * (x - 2^k) / k / 2^k = 0.
> <snip>
> Nice analysis!
>
> > %3 = [L, 1/2*L^2 + 1/2*L, 1/6*L^3 + 5/8*L^2 + 1/4*L, 1/24*L^4 + 3/8*L^3
> > + 9/16*L^2 + 1/8*L, 1/120*L^5 + 9/64*L^4 + 17/32*L^3 + 7/16*L^2 +
> > 1/16*L, 1/720*L^6 + 7/192*L^5 + 55/192*L^4 + 115/192*L^3 + 5/16*L^2 +
> > 1/32*L]
>
>
> Here is a slight variation of the implementation, with c = log(2) and S = 1
> + z. Pari-GP has a built-in series reversion routine serreverse(). I
> truncated to a polynomial to extract the coefficients.
>
> ? xinS=log(1+z)/(c+log(1+z/2));
> ? Sinx=serreverse(xinS);
> ? P=truncate(Sinx);
Sorry, I forgot to post my answer, but it is similar:
S=serreverse(log(1+x)/(log2+log(1+x/2)))+1;
2*exp(log(S)/x-log2) == S+1
%3 = 1
(Your formula is missing the +1, but this does not change the polynomials in log2).
Cheers,
Bill.