Bill Allombert on Mon, 09 Sep 2024 23:29:41 +0200
|
[Date Prev] [Date Next] [Thread Prev] [Thread Next] [Date Index] [Thread Index]
Re: Question regarding trace map
|
- To: pari-users@pari.math.u-bordeaux.fr
- Subject: Re: Question regarding trace map
- From: Bill Allombert <Bill.Allombert@math.u-bordeaux.fr>
- Date: Mon, 9 Sep 2024 23:29:33 +0200
- Arc-authentication-results: i=1; smail; arc=none
- Arc-message-signature: i=1; a=rsa-sha256; d=math.u-bordeaux.fr; s=openarc; t=1725917378; c=relaxed/relaxed; bh=Y5Gla8tsWE4To+iPOCYWl502/GiGNyIfQWVEiVObnXY=; h=DKIM-Signature:Date:From:To:Subject:Message-ID:Mail-Followup-To: References:MIME-Version:Content-Type:Content-Disposition: In-Reply-To; b=2PxPd9jgJKZIm2RWUwr5tNIEDVPpzb4f4KbTsbkamehyrdbQMvZ8r260UCaYd0a72JrQ9rYLw/nYC5+0cLpc1Tkirug9jjeNqWC70Hmo6R24OzTObDv+jPRyRuBNz2+ePHmS5hgtMH1Qebitv7IH2BQCKAi4dpeVDSlFULS9ddTZ2BNwUKv6/Ct6SJZFC6MRrEMKp2/wDuWiwfoE/NcTBTU44UGebNshC9OZ/vD0sUa9QRoCZvoQNq6Q9kO8sgISTOjwkOT6ddQ5o3T2CI/R7w7qVJ3lz3qaXrX8milNy1LlyeZrphhiSd72uN/5NgmzgIQYT/WgP4XjaS0o3At18nzPpm3HuGX3OmEOlS4i0rBPyudPaC+L/SmY/s9TyzRUU56quphzuRIoZVBn1I0X2ROEzzpmOI95HlfI3Pg0b0x8VG6par7Khh2D7Ydv3NZpZR6CY8/YC81OYgIy90NEJPldznFtBeqMdxNHizpSAQueYOCdSiBiVpXeFvLaUw7Yi1AW1skX/o1VrWAmUxTsu2+2TCWY1HJaOFJnARPP5jNT7ds4JtTJixhFQOmSQXmJ7ektAlVMOXiLlRKjNiIRonTQ1Og45BvwxxhAEQB4ZZdC/RvAmL+BSzshxHkVjC24V10TDKdtR99lyaVUoWLKpof9M0p/TlNOYCS97xE25p8=
- Arc-seal: i=1; a=rsa-sha256; d=math.u-bordeaux.fr; s=openarc; t=1725917378; cv=none; b=VrD5aQnGKCqdblcdLX1PrzY2jfHnmZFMfQ+XU1zC75iahp4HlCCB6A8DMNvY3SpAttRoHK70NSut0sEF2u9PD318yqSO0UJ+chK5KHWxI56Eh5fBWHjg6r7yHkIbVUFWltx0jT+aikH5n1AIlIMrYfJeY5SL0oOd5NlP3Pg0oGg0QlzKqOGTkle4uhYuRevrFtwkMDj0KOlMdFPmKfHLD6FDsPASAzeNbo/shyy+C1SyJ4nYvOKJNunb3tv52ZK1YYqaJv6HE5U6mBVlWkuzPONU2QJVTzTPn3QtZbXWdZmHDm8Ea0dV/hSM6fl4Z17F9dUstZKkacg2UB120RSMHZYcQZ8LbIWt7HSJWnHuGxR7pxeANB/rxxCAnmSjoaNj8QUIDomN4Zxz4X7s1yCBNwtg3z+v0l7zoRM9tlojh8uapHJeev9rwzxR7Y5vitYhomY4ybh279g5SkROxfhEzr5fax+hs5vR8OXL9AtJOOkrPDUw0Z8NPL7NPeeIxC80wuby5KS999P1GbrdE6jiCAdH9++JQM2dIbc2AJvTSPvIbMDT8mOFs3AsXAAqASj41wdnyh5GIgI4NuSJ4mPzE3sXcRpgrbqPN1tCFjkoIBTqcG/aISoSN5AO+5pfM//TSQA/CeZPUqhGz8Z21FFABGKMW4i2qdnGD+ZoGMcp/gI=
- Authentication-results: smail; dmarc=none header.from=math.u-bordeaux.fr
- Authentication-results: smail; arc=none
- Delivery-date: Mon, 09 Sep 2024 23:29:41 +0200
- Dkim-signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=math.u-bordeaux.fr; s=2022; t=1725917378; bh=Y5Gla8tsWE4To+iPOCYWl502/GiGNyIfQWVEiVObnXY=; h=Date:From:To:Subject:References:In-Reply-To:From; b=gPu5gsy2Kb15Zo7CXlgbn0np/0u8j4bfceYiedtgNbbxp/bhFdSvzFKKXPlFfP8Ai vkhZW0ULWTyVkqwlyqIyzRG7yjmeCHytyNhyBuXZzkQwgApZ8jcp55gXzykxrBzZuu jxugqU4wFOKH4sv70Sz1o+ubTandQ0LfBOVV9rRga0YvdlhiOGhkvLHYYQ/XFO/fTs wecISuhNVDjffb+9yjhQZEaoSH7Q11+CjmK8I6hCFMWIUMualdAHhAhcXtDo4S/is8 yDvJh7UcSqeMpl5Yclu0kUXyxec20s7nFI9ScH+kgjX3+Mj+2PgzRToZOutuzlwxOS 62cxae0xvLHAhoOEASV7Fz5sQmW7tcvqap+gQ3A7RBl1kFbXE6y1mqXx/2j/ZJHB6q eRQn6gw3nJxPG35zG5tUG+M8nG9uz7puz7Sa7cYkUj/bhWOGoxD68bHT8fDuV8khf/ ehBIXx9Dpsc9xHDKtv3p3g7MzbafvX+FqvSI4N0eLDAYLcRB+Kz14P8pmbZ6M+mcva lta2I/x3sSeCA8YsftBYb4ftpTabjdX45PPt/D/JRJHEfEnLZEJ4ulDbDwNYGJsd7H 96lDA0yHVAKaAH1B0yrRw7GH+jH95Aa7cBOTPmZeZ/SgF0VhAkUX5cCyWBrGHvPZbY PVKz6vkeR8Y0RB0CiX3NBOg0=
- In-reply-to: <SJ0PR19MB47626ECDE4F5F24F06E1C35780992@SJ0PR19MB4762.namprd19.prod.outlook.com>
- Mail-followup-to: pari-users@pari.math.u-bordeaux.fr
- References: <SJ0PR19MB47626ECDE4F5F24F06E1C35780992@SJ0PR19MB4762.namprd19.prod.outlook.com>
On Mon, Sep 09, 2024 at 08:33:46PM +0000, LNU, Swati wrote:
> Hi all,
> I am trying to show using pari/gp that trace map of f(z) = eta(z)^2 * eta(2z)^2 * eta(3z)^2 * eta(6z)^2 is 0.
> I am using this defn. of trace map.
> Tr_{N/p}^{N}(f) = f + p^{1 - (k/2)} f | W_{N}^{p} | U_{p} where W_{N}^{p} = [pa, 1; Nb, p] with det(W_{N}^{p}) = p and
> f | U_{p} = \sum_{j = 0}^{p-1} f | [1, j ; 0, p]
> Taking N = 6, k = 4, p = 2, W_{6}^{2} = [4, 1; 6, 2], the computation reduces to the following:
>
Ser(mfcoefs(mffrometaquo([1, 2; 2, 2; 3, 2; 6, 2], 100), q) + (1/2) *
Ser(mfslashexpansion(mf, f, [4, 2; 6, 4], 100, 0), q) + (1/2) *
Ser(mfslashexpansion(mf, f, [4, 6; 6, 10], 100, 0), q)
> where mf is the space
> where f belongs to and f = mffrometaquo([1, 2; 2, 2; 3, 2; 6, 2]).
You do not need to use Ser, you can add the vectors directly.
Furthermore, you are missing some parenthesis.
Cheers,
Bill.