Bill Allombert on Fri, 13 Sep 2024 21:37:48 +0200 |
[Date Prev] [Date Next] [Thread Prev] [Thread Next] [Date Index] [Thread Index]
Re: Question on finding eta expansions |
On Fri, Sep 13, 2024 at 07:22:49PM +0000, LNU, Swati wrote: > Hello, > I am trying to find the expansion of the eta quotient f(z) = \eta(7z) > \eta(z)^2 in fractional powers of q^(1/24) and I tried the following code: > D(n) = {q^(9/24) * eta(q^7 + O(q^(n+1))) * eta(q + O(q^(n+1)))^(2) ;} PARI just cannot define power series with fractional exponents. You have two options: - Do the multiplication by q^(9/24) 'in you head' D(n) = { eta(q^7 + O(q^(n+1))) * eta(q + O(q^(n+1)))^(2) ;} ? D(10) %6 = 1-2*q-q^2+2*q^3+q^4+2*q^5-2*q^6-q^7-q^9-q^10+O(q^11) Set Q = q^(1/24) (in your head) and then do D(n) = {Q^9 * eta(Q^(24*7) + O(Q^(24*(n+1)))) * eta(Q^24 + O(Q^(24*(n+1))))^(2) ;} ? D(10) %4 = Q^9-2*Q^33-Q^57+2*Q^81+Q^105+2*Q^129-2*Q^153-Q^177-Q^225-Q^249+O(Q^273) For exampke the second exponent is 9/24 + 1 = 33/24 Cheers, Bill.