LNU, Swati on Mon, 16 Sep 2024 23:02:16 +0200 |
[Date Prev] [Date Next] [Thread Prev] [Thread Next] [Date Index] [Thread Index]
Re: Regard hecke operators in half integer weight setting |
Hello,
Thank you for your reply. I realize my mistake.
Regards,
Swati
"The pursuit of science is at its best when it is a part of a way of life" - Alladi Ramakrishnan.
From: Bill Allombert <Bill.Allombert@math.u-bordeaux.fr>
Sent: Sunday, September 15, 2024 3:44 PM To: LNU, Swati <S10@email.sc.edu> Cc: pari-users@pari.math.u-bordeaux.fr <pari-users@pari.math.u-bordeaux.fr> Subject: Re: Regard hecke operators in half integer weight setting On Sun, Sep 15, 2024 at 09:43:26AM +0200, Bill Allombert wrote:
> On Sun, Sep 15, 2024 at 02:45:16AM +0000, LNU, Swati wrote: > > Dear Professor, > > This command itself gives the error. > > > > S(f, p, k) = {f = truncate(f); sum(n = 1, poldegree(f), (polcoeff(f, (n * p^2))) + (kronecker(-4, n)^(k - (1/2)) * kronecker(12 * n,p) * p^(k - (3/2)) * polcoeff(f, n)) + (sumdiv(n, p, p^((2 * k)- 2) * polcoeff(f, n/p^2))) * q^n) + O(q^(poldegree(f) + 1));} > > Ah OK! But there is no error on my computer: > > parisizemax = 4000002048, primelimit = 500000, nbthreads = 8 > ? S(f, p, k) = {f = truncate(f); sum(n = 1, poldegree(f), (polcoeff(f, (n * p^2))) + (kronecker(-4, n)^(k - (1/2)) * kronecker(12 * n,p) > * p^(k - (3/2)) * polcoeff(f, n)) + (sumdiv(n, p, p^((2 * k)- 2) * polcoeff(f, n/p^2))) * q^n) + O(q^(poldegree(f) + 1));} ^^^^^ n/p^2 has no reason to be an integer, so this is not valid. Maybe you want to restrict the sum to primes such that p^2 divides n ? then add if(n%p^2==0,....,0) iun the sum. Cheers, Bill. |