Bill Allombert on Mon, 11 Nov 2024 10:32:38 +0100
|
[Date Prev] [Date Next] [Thread Prev] [Thread Next] [Date Index] [Thread Index]
Re: How to calculate the conductor of an abelian extension such as Q[x]/(x^3- 19x -19)
|
- To: pari-users@pari.math.u-bordeaux.fr
- Subject: Re: How to calculate the conductor of an abelian extension such as Q[x]/(x^3- 19x -19)
- From: Bill Allombert <Bill.Allombert@math.u-bordeaux.fr>
- Date: Mon, 11 Nov 2024 10:32:31 +0100
- Cc: David Bernier <david250@videotron.ca>
- Delivery-date: Mon, 11 Nov 2024 10:32:38 +0100
- Dkim-signature: v=1; a=rsa-sha256; c=relaxed/simple; d=math.u-bordeaux.fr; s=2022; t=1731317556; bh=vJb+qxn2qPU+DpjQdp64+I+JOJMQJIKSWkP9a51/t6g=; h=Date:From:To:Cc:References:In-Reply-To:From; b=Qk7R5myjSuE4q3oFTtW+E00Aeye4a6OloC9STnmjSahWJr5Dm79Ekx5sQ4wauxmTi pWa1t8pIPzjCnZ3Ji2Fs5p5APn/1vfuaxB7nfIGfhTx2lpTxhJGWhvsEaqgi0DmFwQ /Q3EILdOJKflEjUZe+t598O53bgS+vdJuVNulLSE1WrmmY4vRzDdfDFojTH9M4hSDo F3gJAtLwkQ6PGWJzfH/EXiLgwlAOefX6RUazQvxLyBWQWz/ourV1Vw/vRadMJkRbGA 7cBJxiLZNDl1W6j3WHNyA2sHyMCni69AxNB+RiTyxz67hQocIIxJ7EvKkKCOXyx+G8 e+Ofh5AEm18YqO12U4fyTAp8Op6CpemkVlob6K3pSkby9FzcF2Oxys7O5q1+wQuFUj B4Qb2Jz6YVDBVW8h1JKwesMtHR6BVJUu7dtDXYM5OXtQvu/zUrVZo1PQw+Lg4Xk/9i jAOydCDZh9huIswD8QOxgsdopwuMCY2yWmWZKLDl50HJOac4ZY/L9eT6FtWpZKLdiX OaYI2mNRAu3nkYALUq7PEQx8e/fcFh50qvFtY7F11qqBfOSs7VMktC0BN40XU+hpRQ AmKdCoNYRLZdrxxCQsIENJhkk/dizxhtfTXM6+XQBeNe8PdQ/VCSw94/ZegYrs24ft /WdJppY+0P7KVbBkD1BnBnfo=
- In-reply-to: <ZzG3eqOlJTQRjlGN@math.u-bordeaux.fr>
- Mail-followup-to: pari-users@pari.math.u-bordeaux.fr, David Bernier <david250@videotron.ca>
- References: <48179fe0-0182-4aae-9a9f-e3d8157a76f9@videotron.ca> <ZzG3eqOlJTQRjlGN@math.u-bordeaux.fr>
On Mon, Nov 11, 2024 at 08:51:22AM +0100, Karim Belabas wrote:
> * David Bernier [2024-11-11 05:08]:
> > I'm interested in cubic extensions of Q that are abelian, in connection with
> > a probable prime test. I have a list of cubic polynomials f_1, ... f_22 and
> > I want to find the first f_i such that f_i is irreducible over F_p, where p
> > can be assumed prime. For a given f_i, I noticed a periodicity in p of the
> > irreducibility character of f_i over F_p (ref. Mathematics Stack Exchange at
> > the link: https://math.stackexchange.com/questions/4995484/irreducibility-of-cubic-polynomials-over-finite-fields-f-p
> > ). User leoli1 mentioned as relevant the conductor N of the splitting field
> > of f_i. I have f_8 = X^3 - 19X - 19 with discriminant 133^2.
>
> (You meant 19^2.)
More precisely, the discriminant of the polynomial is 133^2,
the discriminant of the field is 19^2.
rnfconductor gives you the prime decomposition law:
If P is of conductor f, rnfconductor will gives you a subgroup H of (Z/fZ)^*
such that for all p not dividing the discriminant of P,
P factors mod p if and only if (p mod f) belongs to H.
Cheers,
Bill.