Bill Allombert on Sat, 16 Nov 2024 13:40:46 +0100
|
[Date Prev] [Date Next] [Thread Prev] [Thread Next] [Date Index] [Thread Index]
Re: PARI/GP timings for operations on biggest known 41,024,320 decimal digit prime
|
- To: pari-users@pari.math.u-bordeaux.fr
- Subject: Re: PARI/GP timings for operations on biggest known 41,024,320 decimal digit prime
- From: Bill Allombert <Bill.Allombert@math.u-bordeaux.fr>
- Date: Sat, 16 Nov 2024 13:40:41 +0100
- Delivery-date: Sat, 16 Nov 2024 13:40:46 +0100
- Dkim-signature: v=1; a=rsa-sha256; c=relaxed/simple; d=math.u-bordeaux.fr; s=2022; t=1731760844; bh=099Xv3lfjmpFoMgjT4NirPyFLUDbKYdolE/Bj8I5HlY=; h=Date:From:To:References:In-Reply-To:From; b=i/fDv8Teeja+YpMYhJSKFll0mbdW+a7ydtPXUFZyBM7tynwxcm/37K1kARnQ4g4I4 AWAAeTSaupDs3Z766mTjnbjleXHYtAfimN8rYBt7XQmOm5u9FR/LLSgAj9KfHjJarT I1mImkm9b8Ou+dJLEHlr27AWRZyYBoMETHBhF7I6S68HuLZocM+l9ydLvL5vK8hqgG aUlyh96Xj7xlMIHF21f2fWlh+ndtq5lMkktBXknGX57xkKCYseUGnPYZxw8TtsmIsJ DGANK4uCQoasmp18CRylB3Rr9S60YJoaF8Jh4TxdjEkeGjxhB8RSwcMkf/FIEpgzK9 jR8yae1KuzKU11No4wiZKEK/6Z2FrlBjNIMgSkOTwJg0wZI3C6X7aOB3H/lVSfBHx9 z/+JD9FWSSCl/VyU7IOdYZvxj3md3zjh+pG9v6IivD7Os/EtWPLC4aB47TIslvLCZ/ MIYURCZfukVqdLo3AmZcyvXerKoCW1+ZhvcGFVfSgDbVpMc3busfKQDHueeVlBK8Bb 9LYiedizngOXowEhH9o5CHy7pPe6ahmQt84UJ7UJwyKtJpp1TJSSozIFPYAyhDd+Yk FYII8dV7mBc5n8E5Dxry7QaoHGqSFDBhGoQvd5vRne14qudZGM3OEJYShRYK0wyntd HoAX8EjxCVLlzb1rLK+IaAIw=
- In-reply-to: <609991030.10791489.1731756764070@wlpnf0203.sys.meshcore.net>
- Mail-followup-to: pari-users@pari.math.u-bordeaux.fr
- References: <2a30482241c6ff4e99a8f26ebfc0d3fb@stamm-wilbrandt.de> <609991030.10791489.1731756764070@wlpnf0203.sys.meshcore.net>
On Sat, Nov 16, 2024 at 12:32:44PM +0100, tony.reix@laposte.net wrote:
> Hi Hermann,
>
> Reading your email on my phone, that looks interesting. However, I'll need to read it on my PC then.
>
>
> BTW, do you know that Mersenne numbers can also be written as:
> M_q=(8x)^2-(3qy)^2
> ?
> Once if M_q is prime (and x & y are obvious). Several times if M_q is composite (and x & y are not obvious at all).
>
>
> Experimenting quickly with Wolfram Alpha, it seems that the Mersenne primes are:
> M_q = 4x^2+3y^2
This is true for every prime numbers congruent to 7 mod 12
> and often:
> M_q = 4x^2+27y^2 .
This ones requires additionaly that 2 is a cube mod p by a well-known
result of Gauss.
However this condition is always true for Mersenne primes for q > 3
Indeed let q > 3 such that M_q is prime
M_q = 2^q-1
since q is odd: M_q = 1 (mod 3)
since q is prime: M_q = 1 (mod q)
so M_q-1 = 3*q*u for some integer u.
2^((M_q-1)/3) = (2^q)^u = 1 [mod M_q]
so 2 is a cube mod M_q and so M_q can be written as 4x^2+27y^2.
Cheers,
Bill