hermann on Sun, 17 Nov 2024 16:15:27 +0100 |
[Date Prev] [Date Next] [Thread Prev] [Thread Next] [Date Index] [Thread Index]
Re: PARI/GP timings for operations on biggest known 41,024,320 decimal digit prime |
On 2024-11-17 14:54, hermann@stamm-wilbrandt.de wrote: Regarding the 3-line GP script at end of my previous email: It got split onto 57 lines by mailing list software.But Linux tr is GP's friend, split script can be executed directly with gp:
hermann@7950x:~/llr405src/linux64llr$ wc --lines Q.gp 57 Q.gp hermann@7950x:~/llr405src/linux64llr$ gp -q < <(tr -d '\n' < q.gp) 1 hermann@7950x:~/llr405src/linux64llr$
On 2024-11-17 03:08, Kurt Foster wrote:In any case, the prime M splits into two prime ideals in Q(sqrt(-23)). If M = x^2 + 23*y^2 the ideals are principal; otherwise not.
In addition to the questions from my previous email, are you sure that this applies to Mersenne primes as well? I tested the Mersenne exponents with -23 being quadratic residue up to 607 manually in gp, see below.And for M_18..M_38 with -23 being quadratic residue with automation, below.
For all 18 primes sqrt(Mod(-23,p)) got computed and verified, not a single exception ...
Regards, Hermann. ? p=2^607-1; ? s=lift(sqrt(Mod(-23,p))); ? (Mod(23,p)^((p+1)/4))^2==Mod(-23,p) %22 = 1 ? p=2^107-1; ? s=lift(sqrt(Mod(-23,p))); ? (Mod(23,p)^((p+1)/4))^2==Mod(-23,p) %25 = 1 ? p=2^89-1; ? s=lift(sqrt(Mod(-23,p))); ? (Mod(23,p)^((p+1)/4))^2==Mod(-23,p) %28 = 1 ? p=2^19-1; ? s=lift(sqrt(Mod(-23,p))); ? (Mod(23,p)^((p+1)/4))^2==Mod(-23,p) %31 = 1 ? p=2^13-1; ? s=lift(sqrt(Mod(-23,p))); ? (Mod(23,p)^((p+1)/4))^2==Mod(-23,p) %34 = 1 ? p=2^7-1; ? s=lift(sqrt(Mod(-23,p))); ? (Mod(23,p)^((p+1)/4))^2==Mod(-23,p) %37 = 1 ? p=2^5-1; ? s=lift(sqrt(Mod(-23,p))); ? (Mod(23,p)^((p+1)/4))^2==Mod(-23,p) %40 = 1 ?hermann@7950x:~/llr405src/linux64llr$ for e in 3217 4253 4423 9941 19937 44497 110503 132049 216091 3021377 6972593
do ./seq $e done
Starting Fermat PRP test of 2^3217-1 Using FMA3 FFT length 160, a = 232^3217-1 is a Fermat Probable prime (23-PRP)! (969 decimal digits) Time : 8.850 ms.
Candidate saved in file t7628367.inCandidate saved in file ���������for further test with Primo.
1 Starting Fermat PRP test of 2^4253-1 Using FMA3 FFT length 192, a = 232^4253-1 is a Fermat Probable prime (23-PRP)! (1281 decimal digits) Time : 11.036 ms. Candidate saved in file t7925138.inCandidate saved in file ��������� for further test with Primo.
1 Starting Fermat PRP test of 2^4423-1 Using FMA3 FFT length 256, a = 232^4423-1 is a Fermat Probable prime (23-PRP)! (1332 decimal digits) Time : 12.623 ms. Candidate saved in file t2957232.inCandidate saved in file ��������G for further test with Primo.
1 Starting Fermat PRP test of 2^9941-1 Using AVX-512 FFT length 1K, a = 232^9941-1 is a Fermat Probable prime (23-PRP)! (2993 decimal digits) Time : 36.387 ms. Candidate saved in file t9276352.inCandidate saved in file ���������& for further test with Primo.
1 Starting Fermat PRP test of 2^19937-1 Using AVX-512 FFT length 1K, a = 232^19937-1 is a Fermat Probable prime (23-PRP)! (6002 decimal digits) Time : 69.816 ms. Candidate saved in file t9010301.inCandidate saved in file ���������M for further test with Primo.
1 Starting Fermat PRP test of 2^44497-1 Using AVX-512 FFT length 4608, a = 232^44497-1 is a Fermat Probable prime (23-PRP)! (13395 decimal digits) Time : 378.879 ms. Candidate saved in file t8327415.inCandidate saved in file ��������ѭ for further test with Primo.
1 Starting Fermat PRP test of 2^110503-1 Using AVX-512 FFT length 6K, a = 232^110503-1 is a Fermat Probable prime (23-PRP)! (33265 decimal digits) Time : 1.143 sec.
1 Starting Fermat PRP test of 2^132049-1 Using AVX-512 FFT length 7K, a = 232^132049-1 is a Fermat Probable prime (23-PRP)! (39751 decimal digits) Time : 1.576 sec.
1 OK until number 0 OK until number 47293008 Starting Fermat PRP test of 2^216091-1 Using AVX-512 FFT length 10752, a = 232^216091-1 is a Fermat Probable prime (23-PRP)! (65050 decimal digits) Time : 3.615 sec.
1 Resuming Fermat PRP test of 2^3021377-1 at bit 223552 [7.39%]Using AVX-512 FFT length 192K, Pass1=3K, Pass2=64, clm=1, 8 threads, a = 23 2^3021377-1 is a Fermat Probable prime (23-PRP)! (909526 decimal digits) Time : 451.393 sec.
1 Starting Fermat PRP test of 2^6972593-1Using AVX-512 FFT length 360K, Pass1=960, Pass2=384, clm=2, 16 threads, a = 23 2^6972593-1 is a Fermat Probable prime (23-PRP)! (2098960 decimal digits) Time : 1121.495 sec.
1 hermann@7950x:~/llr405src/linux64llr$