Bill Allombert on Sat, 23 Nov 2024 23:43:03 +0100
|
[Date Prev] [Date Next] [Thread Prev] [Thread Next] [Date Index] [Thread Index]
Re: question on finding square roots in a modulus
|
- To: pari-users@pari.math.u-bordeaux.fr
- Subject: Re: question on finding square roots in a modulus
- From: Bill Allombert <Bill.Allombert@math.u-bordeaux.fr>
- Date: Sat, 23 Nov 2024 23:42:56 +0100
- Delivery-date: Sat, 23 Nov 2024 23:43:03 +0100
- Dkim-signature: v=1; a=rsa-sha256; c=relaxed/simple; d=math.u-bordeaux.fr; s=2022; t=1732401781; bh=UiCZMfuU+k46DebuHGr6mdK6AH7VDRTbe/KQykwf+hE=; h=Date:From:To:Subject:References:In-Reply-To:From; b=szJS+CIOKr4XMRj78l4eOJx4QxW+t5BlyN8rccSO7BOcbzvwGLw7szw1oNonUeGIT kep/DmIPeA/1+Lj/SCc7MfGCWQfi7cfR4gzm6IUQ9/uHASM5OAquEcrrmBR/q/htNU 4aGRjK7fsj9Dr/ozyLG1HmxbPEvLvEQJ7EHBivl/fcNArcSOviI+S9avqNHhwgV8Rc aarEi/YcEYsNHg1ywV+E43t9Yo63mRHb2OaxOJ2zT/oUmRcdd3v2eGCF6tHhvtYlYZ yZDdJCwtbGauDAICOlkB81/2/MOBgeAiUbka/sd3dKu8oilGTahiQkk8ah3TtMo6g7 oqzej2LxfpzCVNZRJqx6xPFcj/lMUlwG9pgb2Q7JNB+1GiTCk1wKJcBwGG0iZdNjMC bVKXQ422G9hFo9QGUvD3qp4cqjTBHmDxPRVzsfCwqmtgskxFzXbVnosZG18ujnt+ta g2ylP74s/u7/0DFn15EtYEcCWD4eXEtCDuQ60JvZecuf3y/CpSj0JsDOhEbXKdIBpb jSrJu/q55AN9CFSWOk1K1FmSXjPI2ocTve0GNLuS6HeFUte6Wf9nWitkZ2u06EssQz y4Az9uMvz6/djZBCLSVj8qDeV9SznVBZN9C5hTeitgQ1wkchzRAeN27HolFFp9lUFe 4fzC9LDRtF+cdWpRAmqcc5yw=
- In-reply-to: <6f273f8d-cacb-42f1-addb-28ed5eecb960@gmail.com>
- Mail-followup-to: pari-users@pari.math.u-bordeaux.fr
- References: <6f273f8d-cacb-42f1-addb-28ed5eecb960@gmail.com>
On Sat, Nov 23, 2024 at 02:03:47PM -0800, American Citizen wrote:
> However, if we tinker around we find that
>
> (Mod(174,221)^2) = Mod(220,221)
>
> so 174 mod 221 is a valid square root of 220 mod 221 or -1 mod 221
>
> How can we quickly find all modulus values 221, such that their square is
> congruent to -1 mod 221 ?
This is a very good question. The most reliable solution is to use Zn_quad_roots
install(Zn_quad_roots,GGG)
isNULL(z=[])=z;
znquadroots(a,F=factor(a.mod))=
{
my(V=isNULL(Zn_quad_roots(F,0,lift(-a))));
if(#V,Mod(V[2],V[1]),V);
}
znquadroots(Mod(-1,221))
%4 = [Mod(21,221),Mod(174,221),Mod(47,221),Mod(200,221)]
We really need to add this to GP proper.
In C there is also a static function 'polrootsmodpn' that we could use.
Cheers,
Bill.